In this problem, we are tasked with determining the new amplitude \( A' \) when the velocity of a particle performing simple harmonic motion triples.
The velocity \( V \) of a particle in simple harmonic motion is given by the equation:
\[
V = \omega \sqrt{A^2 - x^2},
\]
where:
\[
\omega = \text{angular frequency}, \quad A = \text{amplitude}, \quad x = \text{displacement from equilibrium}.
\]
Step 1: Initial velocity at displacement \( x = \frac{2A}{3} \)
The initial velocity is given by:
\[
V = \omega \sqrt{A^2 - \left(\frac{2A}{3}\right)^2}.
\]
Simplify:
\[
V = \omega \sqrt{A^2 - \frac{4A^2}{9}} = \omega \sqrt{\frac{5A^2}{9}} = \omega \frac{\sqrt{5}A}{3}.
\]
Step 2: Velocity when speed is tripled
The final velocity is three times the initial velocity, so:
\[
3V = \omega \sqrt{A'^2 - \left(\frac{2A}{3}\right)^2}.
\]
Substitute the expression for \( V \):
\[
3 \left(\omega \frac{\sqrt{5}A}{3}\right) = \omega \sqrt{A'^2 - \frac{4A^2}{9}}.
\]
Simplify:
\[
\omega \sqrt{5}A = \omega \sqrt{A'^2 - \frac{4A^2}{9}}.
\]
Step 3: Solve for \( A' \)
Square both sides to eliminate the square roots:
\[
5A^2 = A'^2 - \frac{4A^2}{9}.
\]
Rearrange the equation:
\[
A'^2 = 5A^2 + \frac{4A^2}{9}.
\]
Simplify:
\[
A'^2 = \frac{45A^2}{9} + \frac{4A^2}{9} = \frac{49A^2}{9}.
\]
Now, take the square root of both sides:
\[
A' = \frac{7A}{3}.
\]
Final Answer:
\[
\boxed{\frac{7A}{3}}.
\]