>
Mathematics
List of top Mathematics Questions
The number of solutions of the equation
$ \sin \,x\,\,\cos \,\,3x=\sin \,3x\,\,\cos \,5x $
in
$ \left[ 0,\frac{\pi }{2} \right] $
is
JKCET - 2009
JKCET
Mathematics
General and Particular Solutions of a Differential Equation
$ \frac{^{8}{{C}_{0}}}{6}{{-}^{8}}{{C}_{1}}{{+}^{8}}{{C}_{2}}\cdot 6{{-}^{8}}{{C}_{3}}{{.6}^{2}}+....{{+}^{8}}{{C}_{8}}{{\cdot 6}^{7}} $
is equal to
JKCET - 2009
JKCET
Mathematics
Binomial theorem
Find the function
$ f(x_1, x_2, x_3) $
satisfying
$ f(x_1, x_2, x_3) = 1 $
at
$ x_1 = 1, x_2 = x_3 = 0 $
.
MHT CET - 2009
MHT CET
Mathematics
Functions
Joint equation of pair of lines through $ (3, - 2) $ and parallel to $ x^2 - 4xy + 3y^2 = 0 $ is
MHT CET - 2009
MHT CET
Mathematics
Straight lines
In
$ \Delta \,\,ABC $
if
$ si{{n}^{2}}A+si{{n}^{2}}B+si{{n}^{2}}C=2, $
then the triangle is
JKCET - 2009
JKCET
Mathematics
Trigonometric Functions
The value of
$ {{\cos }^{-1}}\,\left( \sin \,\frac{7\pi }{6} \right) $
is equal to
JKCET - 2009
JKCET
Mathematics
Properties of Inverse Trigonometric Functions
The point on the x-axis equidistant from the points
$ (4,3,1) $
and
$ (-2,\,-6,\,-2) $
is
JKCET - 2009
JKCET
Mathematics
introduction to three dimensional geometry
If
$\alpha$
and
$\beta$
are roots of the quadratic equation
$ {{x}^{2}}+4x+3=0, $
then the equation whose roots are
$ 2\alpha \,\text{+}\,\beta $
and
$ \alpha \,\text{+2}\,\beta $
is
JKCET - 2009
JKCET
Mathematics
Complex Numbers and Quadratic Equations
If the third term of a
$G.P.$
is
$3$
, then the product of its first
$5$
terms is
JKCET - 2009
JKCET
Mathematics
Sequence and series
The number of diagonals of a polygon of
$20$
sides is
JKCET - 2009
JKCET
Mathematics
permutations and combinations
If
$X$
and
$Y$
are
$ 2\times 2 $
matrices such that
$ 2X+3Y=O $
and
$ X+2Y=I, $
where
$ O $
and
$ I $
denote the
$ 2\times 2 $
zero matrix and the
$ 2\times 2 $
identity matrix, then
$X$
is equal to
JKCET - 2009
JKCET
Mathematics
Matrices
The value of $\begin{vmatrix} \log_5\,729 & \log_3\,5 \\[0.3em] \log_5\,27 & \log_9\,25 \end{vmatrix}.\begin{vmatrix} \log_3\,5 & \log_{27}\,5 \\[0.3em] \log_5\,9 & \log_5\,9 \end{vmatrix}=$
JKCET - 2009
JKCET
Mathematics
Properties of Determinants
If
$ f\,(x)=\underset{y\to x}{\mathop{lim}}\,\,\frac{{{\sin }^{2}}y-{{\sin }^{2}}x}{{{y}^{2}}-{{x}^{2}}}, $
then
$ \int{4x\,\,f(x)\,\,dx} $
=
JKCET - 2009
JKCET
Mathematics
Integrals of Some Particular Functions
$x \in R : \frac{2x -1}{x^3 + 4x^2 + 3x} \in R$ Equals
BITSAT - 2009
BITSAT
Mathematics
Relations and functions
If the sum to
$2n$
terms of the
$ A.P. \text{ }2,\text{ }5,\text{ }8,11,... $
is equal to the sum to
$n$
terms of the
$\text{ }57,\text{ }59,\text{ }61,\text{ }63,\text{ }...\text{ }, $
then
$n$
=
JKCET - 2009
JKCET
Mathematics
Sequence and series
In a boolean algebra
$B$
with respect to
$' +' $
and
$'.',$
$ x' $
denotes the negation of
$ x\in B $
. Then
KEAM - 2009
KEAM
Mathematics
mathematical reasoning
The value of
$ \cos [{{\tan }^{-1}}\{\sin ({{\cot }^{-1}}x)\}] $
is
KEAM - 2009
KEAM
Mathematics
Inverse Trigonometric Functions
The solution of the differential equation $ \frac{dy}{dx}=\frac{1}{x+{{y}^{2}}} $ is
KEAM - 2009
KEAM
Mathematics
Differential equations
The range of the function
$ f(x)\frac{{{x}^{2}}-x+1}{{{x}^{2}}+x+1} $
where
$ x\in R, $
is
KEAM - 2009
KEAM
Mathematics
Functions
If the equation
$ (a+1){{x}^{2}}-(a+2)x+(a+3)=0 $
has roots equal in magnitude but opposite in signs, then the roots of the equation are
JKCET - 2009
JKCET
Mathematics
Complex Numbers and Quadratic Equations
If
$ (3,\,\,3) $
is a vertex of a triangle and
$ (-3,\,\,6) $
and
$ (9,\,\,6) $
are the mid points of the two sides through this vertex, then the centroid of the triangle is
JKCET - 2009
JKCET
Mathematics
Straight lines
If
$\vec{a}+2\vec{b}+3\vec{c}=\vec{0}$
then
$\vec{a} \times \vec{b}+\vec{b} \times \,\vec{c}+\vec{c} \times \vec{a} $
=
KCET - 2009
KCET
Mathematics
Vector Algebra
If $x$ is numerically so small so that $x^{2}$ and higher powers of $x$ can be neglected, then $\left(1+\frac{2 x}{3}\right)^{3 / 2} \cdot(32+5 x)^{-1 / 5}$ is approximately equal to
EAMCET - 2009
EAMCET
Mathematics
binomial expansion formula
The coefficient of $x^{24}$ in the expansion of $\left(1+x^{2}\right)^{12}\left(1+x^{12}\right)\left(1+x^{24}\right)$ is
EAMCET - 2009
EAMCET
Mathematics
binomial expansion formula
$\frac{1}{e^{3 x}}\left(e^{x}+e^{5 x}\right)=a_{0}+a_{1} x +a_{2} x^{2}+\ldots$ $\Rightarrow 2 a_{1}+2^{3} a_{3}+2^{5} a_{5}+\ldots$ is equal to
EAMCET - 2009
EAMCET
Mathematics
binomial expansion formula
Prev
1
...
890
891
892
893
894
...
1168
Next