Question:

If $ f\,(x)=\underset{y\to x}{\mathop{lim}}\,\,\frac{{{\sin }^{2}}y-{{\sin }^{2}}x}{{{y}^{2}}-{{x}^{2}}}, $ then $ \int{4x\,\,f(x)\,\,dx} $ =

Updated On: Jun 23, 2024
  • $ \cos \,\,2x+c $
  • $ 2\,\cos \,\,2x+c $
  • $ -\,\cos \,\,2x+c $
  • $ -2\,\cos \,\,2x+c $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

$ f(x)=\underset{y\to x}{\mathop{\lim }}\,\,\,\,\frac{{{\sin }^{2}}\,y-\,{{\sin }^{2}}x}{{{y}^{2}}-{{x}^{2}}} $
$ \left[ \frac{0}{0}\,form \right] $
$ =\underset{y\to x}{\mathop{\lim }}\,\,\frac{2\sin \,y\,\cos \,y-0}{2y-0} $
$ =\frac{\sin \,2x}{2x} $
$ \therefore $ $ \int{4x\,\,f(x)\,\,dx=\int{4x\,\,\left( \frac{\sin 2x}{2x} \right)}\,\,dx} $
$ =2\int{\sin \,\,2x\,\,dx} $
$ =-\cos \,2x+c $
Was this answer helpful?
0
0

Concepts Used:

Integrals of Some Particular Functions

There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.

Integrals of Some Particular Functions:

  • ∫1/(x2 – a2) dx = (1/2a) log|(x – a)/(x + a)| + C
  • ∫1/(a2 – x2) dx = (1/2a) log|(a + x)/(a – x)| + C
  • ∫1/(x2 + a2) dx = (1/a) tan-1(x/a) + C
  • ∫1/√(x2 – a2) dx = log|x + √(x2 – a2)| + C
  • ∫1/√(a2 – x2) dx = sin-1(x/a) + C
  • ∫1/√(x2 + a2) dx = log|x + √(x2 + a2)| + C

These are tabulated below along with the meaning of each part.