>
Mathematics
List of top Mathematics Questions
The value of integral $\int\limits_{-1}^{1} \frac{\left|x+2\right|}{x+2} dx$ is
WBJEE - 2009
WBJEE
Mathematics
Fundamental Theorem of Calculus
The length of the diameter of the circle which cuts three circles
$x^2 + y^2 - x - y - 14 = 0;$
$x^2 + y^2 + 3x - 5y - 10 = 0 ;$
$x^2 + y^2 - 2x + 3y - 27 = 0$
orthogonally, is
KCET - 2009
KCET
Mathematics
Circle
The angle between the lines joining the foci of an ellipse to one particular extremity of the minor axis is
$90^{\circ}$
The eccentricity of the ellipse is
WBJEE - 2009
WBJEE
Mathematics
Ellipse
The equation
$\sqrt{3}\, \sin \,x+\cos\,x = 4$
has
WBJEE - 2009
WBJEE
Mathematics
Trigonometric Equations
If If
$n =(2020)$
, then
$\frac {1}{\log_2n}+\frac {1}{\log_3n}+\frac {1}{\log_4n}+............+\frac {1}{\log_{2020} n}$
KCET - 2009
KCET
Mathematics
Sequence and series
The line passing through the extremity A of the major axis and extremity B of the minor axis of the ellipse
$x^2 + 9y^2 = 9$
meets its auxiliary circle a t the point M. Then, the area (insqunits) of the triangle with vertices at A, M and the origin O is
JEE Advanced - 2009
JEE Advanced
Mathematics
Conic sections
If $\alpha, \beta, \gamma$ are the roots of $x^{3}+4 x+1=0$, then the equation whose roots are $\frac{\alpha^{2}}{\beta+\gamma}, \frac{\beta^{2}}{\gamma+\alpha},\,\frac{\gamma^{2}}{\alpha+\beta}$ is
EAMCET - 2009
EAMCET
Mathematics
binomial expansion formula
The number of subsets of $\{1, 2, 3 ,............,9\}$ containing at least one odd number is
EAMCET - 2009
EAMCET
Mathematics
types of sets
For
$|x|<1$
, the constant term in the expansion of
$\frac{1}{(x-1)^{2}(x-2)}$
is
EAMCET - 2009
EAMCET
Mathematics
binomial expansion formula
$p$ points are chosen on each of the three coplanar lines. The maximum number of triangles formed with vertices at these points is
EAMCET - 2009
EAMCET
Mathematics
Coplanarity of Two Lines
Match the following.
EAMCET - 2009
EAMCET
Mathematics
Inverse Trigonometric Functions
Let
$f(x)=x^{2}+a x +b,$
where
$a, b \in R .$
If
$f(x)=0$
has all its roots imaginary, then the roots of
$f(x)+f'(x)+f''(x)=0$
are
EAMCET - 2009
EAMCET
Mathematics
binomial expansion formula
A binary sequence is an array of $0's$ and $1's$. The number of $n$ -digit binary sequences which contain even number of $0's$ is
EAMCET - 2009
EAMCET
Mathematics
Binary operations
The number of subsets of $\{1,2,3, \ldots, 9\}$ containing at least one odd number is
EAMCET - 2009
EAMCET
Mathematics
types of sets
$ \int e^{x} \frac{\left(x-1\right)}{x^{2}} dx $ is equal to
MHT CET - 2009
MHT CET
Mathematics
integral
$ \int_{0}^{x}{\log \,(\cot \,x\,+\,\tan t)\,dt} $
=
JKCET - 2009
JKCET
Mathematics
Integrals of Some Particular Functions
The value of $ \displaystyle\lim_{n\to\infty} \left[\frac{n}{n^{2}+1^{2}}+\frac{n}{n^{2}+2^{2}}+\ldots+\frac{1}{n^{2}+2n}\right] $ is
WBJEE - 2009
WBJEE
Mathematics
Definite Integral
The modulus of
$\frac{1-i}{3+i}+\frac{4i}{5}$
is
WBJEE - 2009
WBJEE
Mathematics
Complex Numbers and Quadratic Equations
$ \int\left[sin \left(log\,x\right)+cos\left(log\,x\right)\right]dx $ is equal to
MHT CET - 2009
MHT CET
Mathematics
integral
If
$ {{\tan }^{-1}}\,2 $
and
$ {{\tan }^{-1}}\,3 $
are two angles of a triangle, then the third angle is
JKCET - 2009
JKCET
Mathematics
Inverse Trigonometric Functions
The sum of the series
$ \left( 1+\frac{{{({{\log }_{e}}\,n)}^{2}}}{2!}+\frac{{{({{\log }_{e}}n)}^{4}}}{4!}+... \right) $
is
JKCET - 2009
JKCET
Mathematics
Sequence and series
The image of the point
$ (6,3,9) $
in the straight line
$ x-2=\frac{1-y}{2}=\frac{z}{2} $
is
JKCET - 2009
JKCET
Mathematics
coordinates of a point in space
The term independent of
$x$
in the expansion of
$ {{\left( \sqrt{\frac{x}{3}}+\frac{3}{2{{x}^{2}}} \right)}^{10}} $
is
JKCET - 2009
JKCET
Mathematics
Binomial theorem
The number of ways in which
$5$
boys and
$5$
girls can be seated for a photograph so that no two girls sit next to each other is
JKCET - 2009
JKCET
Mathematics
permutations and combinations
If
$ {{x}_{1}},{{x}_{2}},......{{x}_{18}} $
are observations such, that
$ \sum\limits_{j=1}^{18}{({{x}_{j}}-8)=9} $
and
$ \sum\limits_{j=1}^{18}{{{({{x}_{j}}-8)}^{2}}=45,} $
then the standard deviation of these observations is
JKCET - 2009
JKCET
Mathematics
Statistics
Prev
1
...
889
890
891
892
893
...
1168
Next