>
Mathematics
List of top Mathematics Questions
What is the value of
$\tan^{-1} \left(\frac{m}{n}\right) - \tan^{-1} \left(\frac{m-n}{m+n}\right) ? $
Mathematics
Inverse Trigonometric Functions
The number of positive integral solutions of the equation
$\tan^{-1} x + \cot^{-1} y = \tan^{-1} 3 , $
is
Mathematics
Inverse Trigonometric Functions
The value of
$\cos \left(\frac{1}{2} \cos^{-1} \frac{1}{8}\right) $
is equal to
Mathematics
Inverse Trigonometric Functions
In a
$\Delta ABC$
, if
$A = tan^{-1}\, 2$
and
$B = tan^{ -1}\, 3$
, then
$C =$
Mathematics
Inverse Trigonometric Functions
$sin^{-1}\left(\frac{1}{\sqrt{e}}\right)> tan^{-1}\left(\frac{1}{\sqrt{\pi}}\right) $
$sin^{-1}\,x>tan^{-1}\,y$
for
$x>y, \forall \,x, y \,\in\left(0, 1\right)$
Mathematics
Inverse Trigonometric Functions
The value of
$cot^{-1}\left\{\frac{\sqrt{1-sin\,x}+\sqrt{1+sin\,x}}{\sqrt{1-sin\,x}-\sqrt{1+sin\,x}}\right\}\left(0 < x < \frac{\pi}{2}\right)$
is
Mathematics
Inverse Trigonometric Functions
$2^{\frac{1}{4}}, 4^{\frac{1}{8}}, 8^{\frac{1}{16}}, 16^{\frac{1}{32}}............ $
is equal to
Mathematics
Sequence and series
$11^{3}-10^{3} +9^{3} -8^{3} +7^{3}-6^{3} +5^{3}-4^{3}+3^{3}-2^{3}+1^{3}= $
Mathematics
Sequence and series
$(100)^{50} + (99)^{50}$
Mathematics
Binomial theorem
If
$x = a + b, y = a \omega +b \omega ^2$
and
$z = a \omega^2 + b \omega$
, then which one of the following is true.
Mathematics
Complex Numbers and Quadratic Equations
If
$b$
and
$c$
are odd integers, then the equation
$x^2 + bx + c = 0$
has
Mathematics
Complex Numbers and Quadratic Equations
The principal value of the
$arg (z)$
and
$ | z |$
of the complex number
$z=1+\cos\left(\frac{11\pi}{9}\right)+ i \, \sin\frac{11\pi}{9}$
are respectively
Mathematics
Complex Numbers and Quadratic Equations
$\left(\frac{1}{1-2i} + \frac{3}{1+i}\right) \left(\frac{3+4i}{2-4i}\right)$
is equal to :
Mathematics
Complex Numbers and Quadratic Equations
If
$P$
is the affix of
$z$
in the Argand diagram and
$P$
moves so that
$\frac{z-i}{z-1}$
is always purely imaginary, then locus of
$z$
is
Mathematics
Complex Numbers and Quadratic Equations
The value of $ \begin{vmatrix} b+c&a&a\\ b &c+a &b\\ c & c &a+b \end{vmatrix}$ is
Mathematics
Matrices
If the three linear equations
$x + 4ay + az = 0$
$x + 3 by + bz = 0$
and
$x + 2cy + cz = 0$
have a non-trivial solution, then a, b, c are in
Mathematics
Matrices
The matrix 'X' in the equation
$AX = B$
, such that
$A = \begin{bmatrix}1&3\\ 0&1\end{bmatrix}$
and
$ B = \begin{bmatrix}1&-1\\ 0&1\end{bmatrix}$
is given by
Mathematics
Matrices
The only integral root of the equation $ \begin{vmatrix} 2-y &2&3\\ 2 &5-y &6\\ 3 & 4 & 10-y \end{vmatrix}$=0 is
Mathematics
Matrices
$B$ is an extremity of the minor axis of an ellipse whose foci are $S$ and $S'$. If $?SBS'$ is a right angle, then the eccentricity of the ellipse is
Mathematics
Ellipse
Which of the following functions are one-one and onto ?
Mathematics
Sets
The value of
$ \frac{\cos 30{}^\circ +i\sin 30{}^\circ }{\cos 60{}^\circ -i\sin 60{}^\circ } $
is equal to
KEAM
Mathematics
Complex Numbers and Quadratic Equations
Let
$S(n)$
denote the sum of the digits of a positive integer n. e.g.
$S(178)=1+$
$7+8=16 .$
Then, the value of
$S(1)+S(2)+S(3)+\ldots+S(99)$
is
KEAM
Mathematics
Sequence and series
$ \int{(x+1){{(x+2)}^{7}}}(x+3)dx $
is equal to
KEAM
Mathematics
Integrals of Some Particular Functions
$ \int{\frac{\sec x cosec x}{2\cot x-\sec x\cos ecx}}dx $
is equal to
KEAM
Mathematics
Integrals of Some Particular Functions
$ \int{\frac{{{4}^{x+1}}-{{7}^{x-1}}}{{{28}^{x}}}}dx $
is equal to
KEAM
Mathematics
Integrals of Some Particular Functions
Prev
1
...
830
831
832
833
Next