Let I=\(∫^\frac{π}{2}_0\frac{sinx-cosx}{1+sinxcosxd}x........(1)\)
\(⇒I=∫^\frac{π}{2}_0\frac{sin(\frac{π}{2}-x)-cos(\frac{π}{2}-x)}{1+sin(\frac{π}{2}-x)cos(\frac{π}{2}-x)dx (∫a0ƒ(x)dx=∫a0ƒx)}dx)\)
\(⇒I=∫_0^{π}{2}\frac{cosx-sinx}{1+sinxcosx}dx...(2)\)
\(Adding(1)and(2),we obtain\)
\(2I=∫_0^\frac{π}{2}\frac{0}{1+sinxcosx}dx\)
\(⇒I=0\)
If \[ \int e^x (x^3 + x^2 - x + 4) \, dx = e^x f(x) + C, \] then \( f(1) \) is:
The value of : \( \int \frac{x + 1}{x(1 + xe^x)} dx \).