\(\frac {e^x}{(1+e^x)(2+e^x)}\)
\(Let\ e^x=t ⇒ e^x dx=dt\)
\(⇒\)∫\(\frac {e^x}{(1+e^x)(2+e^x)}dx\) = \(∫\frac {dt}{(t+1)(t+2)}\)
=\(∫[\frac {1}{(t+1)}-\frac {1}{(t+2)}]dt\)
= \(log\ |t+1|-log\ |t+2|+C\)
= \(log|\frac {t+1}{t+2}|+C\)
= \(log|\frac {1+e^x}{2+e^x}|+C\)
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is:
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.
For examples,