Let I=\(\int_{0}^{1} x(1-x)^n \,dx\)
∴I=\(\int_{0}^{1} (1-x)(1-(1-x))^n \,dx\)
=\(\int_{0}^{1} x(1-x) (x)^n \,dx\)
\(=∫^1_0(x^n-x^{n+1})dx\)
\(=[\frac{x^{n+1}}{n+1}-\frac{x^{n+2}}{n+2}]\,\,\,\,\, (∫^a_0ƒ(x)dx=∫^a_0ƒ(a-x)dx)\)
=\([\frac{1}{n+1}-\frac{1}{n+2}]\)
=\(\frac{(n+2)-(n+1)}{(n+1)(n+2)}\)
=\(\frac{1}{(n+1)(n+2)}\)
If \[ \int e^x (x^3 + x^2 - x + 4) \, dx = e^x f(x) + C, \] then \( f(1) \) is:
The value of : \( \int \frac{x + 1}{x(1 + xe^x)} dx \).