Let I =∫−55∣x+2∣dx
It can be seen that (x+2)≤0 on [−5,−2] and (x+2)≥0 on [−2,5].
∴ I=∫−5−2−(x+2)dx+∫−25(x+2)dx (∫abf(x)=∫aef(x)+∫cbf(x))
I=−[2x2+2x]−5−2+[2x2+2x]−25
=−[2(−2)2+2(−2)−2(−5)2−2(−5)]+−[2(5)2+2(5)−2(−2)2−2(−2)]
=-[2-4-225+10]+[225+10-2+4]
=-2+4+225-10+225+10-2+4
=29