Let \(I\) =\(\int_{-5}^{5} |x+2|\,dx\)
It can be seen that (x+2)≤0 on [−5,−2] and (x+2)≥0 on [−2,5].
∴ \(I=\int^{-2}_{-5}-(x+2)dx+\int^5_{-2}(x+2)dx\) \(\bigg(\int^b_af(x)=\int^e_af(x)+\int^b_cf(x)\bigg)\)
I=\(-\bigg[\frac{x^2}{2}+2x\bigg]^{-2}_{-5}+\bigg[\frac{x^2}{2}+2x\bigg]^{5}_{-2}\)
=\(-\bigg[\frac{(-2)^2}{2}+2(-2)-\frac{(-5)^2}{2}-2(-5)\bigg]+-\bigg[\frac{(5)^2}{2}+2(5)-\frac{(-2)^2}{2}-2(-2)\bigg]\)
=-\(\bigg[\)2-4-\(\frac{25}{2}\)+10\(\bigg]\)+\(\bigg[\)\(\frac{25}{2}\)+10-2+4\(\bigg]\)
=-2+4+\(\frac{25}{2}\)-10+\(\frac{25}{2}\)+10-2+4
=29
If \[ \int e^x (x^3 + x^2 - x + 4) \, dx = e^x f(x) + C, \] then \( f(1) \) is:
The value of : \( \int \frac{x + 1}{x(1 + xe^x)} dx \).