Let \(I\) =\(\int_{-5}^{5} |x+2|\,dx\)
It can be seen that (x+2)≤0 on [−5,−2] and (x+2)≥0 on [−2,5].
∴ \(I=\int^{-2}_{-5}-(x+2)dx+\int^5_{-2}(x+2)dx\) \(\bigg(\int^b_af(x)=\int^e_af(x)+\int^b_cf(x)\bigg)\)
I=\(-\bigg[\frac{x^2}{2}+2x\bigg]^{-2}_{-5}+\bigg[\frac{x^2}{2}+2x\bigg]^{5}_{-2}\)
=\(-\bigg[\frac{(-2)^2}{2}+2(-2)-\frac{(-5)^2}{2}-2(-5)\bigg]+-\bigg[\frac{(5)^2}{2}+2(5)-\frac{(-2)^2}{2}-2(-2)\bigg]\)
=-\(\bigg[\)2-4-\(\frac{25}{2}\)+10\(\bigg]\)+\(\bigg[\)\(\frac{25}{2}\)+10-2+4\(\bigg]\)
=-2+4+\(\frac{25}{2}\)-10+\(\frac{25}{2}\)+10-2+4
=29
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]
