Question:

By using the properties of definite integrals, evaluate the integral: 55x+2dx\int_{-5}^{5} |x+2|\,dx

Updated On: Oct 7, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Let  II =55x+2dx\int_{-5}^{5} |x+2|\,dx

It can be seen that (x+2)≤0 on [−5,−2] and (x+2)≥0 on [−2,5].

∴ I=52(x+2)dx+25(x+2)dxI=\int^{-2}_{-5}-(x+2)dx+\int^5_{-2}(x+2)dx                                                                  (abf(x)=aef(x)+cbf(x))\bigg(\int^b_af(x)=\int^e_af(x)+\int^b_cf(x)\bigg)

I=[x22+2x]52+[x22+2x]25-\bigg[\frac{x^2}{2}+2x\bigg]^{-2}_{-5}+\bigg[\frac{x^2}{2}+2x\bigg]^{5}_{-2}

=[(2)22+2(2)(5)222(5)]+[(5)22+2(5)(2)222(2)]-\bigg[\frac{(-2)^2}{2}+2(-2)-\frac{(-5)^2}{2}-2(-5)\bigg]+-\bigg[\frac{(5)^2}{2}+2(5)-\frac{(-2)^2}{2}-2(-2)\bigg]

=-[\bigg[2-4-252\frac{25}{2}+10]\bigg]+[\bigg[252\frac{25}{2}+10-2+4]\bigg]

=-2+4+252\frac{25}{2}-10+252\frac{25}{2}+10-2+4

=29

Was this answer helpful?
0
0