Question:

By using the properties of definite integrals, evaluate the integral: \(∫_0^π\frac{xdx}{1+sinx}\)

Updated On: Oct 7, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Let I=\(∫_0^π\frac{xdx}{1+sinx}.....(1)\)

\(⇒I=∫^π_0\frac{(π-x)}{1+sin(π-x}dx       (∫^a_0ƒ(x)dx=∫^a_0ƒ(a-x)dx)\)

\(⇒I=∫^π_0\frac{(π-x)}{1+sinx}dx...(2)\)

\(Adding(1)and(2),we obtain\)

\(⇒2=∫^π_0\frac{(π)}{1+sinx}dx\)

\(⇒2I=π∫^π_0\frac{(1-sinx)}{(1+sinx)(1-sinx)}dx\)

\(⇒2I=π∫^π_0 \frac{1-sinx}{cos^2x}dx\)

\(⇒2I=π∫^π_0{sec^2x-tanxsecx}dx\)

\(⇒2I=π[tanx-secx]^π_0\)

\(⇒2I=π[2]\)

\(⇒I=π\)

Was this answer helpful?
0
0