Let I=\(∫_0^π\frac{xdx}{1+sinx}.....(1)\)
\(⇒I=∫^π_0\frac{(π-x)}{1+sin(π-x}dx (∫^a_0ƒ(x)dx=∫^a_0ƒ(a-x)dx)\)
\(⇒I=∫^π_0\frac{(π-x)}{1+sinx}dx...(2)\)
\(Adding(1)and(2),we obtain\)
\(⇒2=∫^π_0\frac{(π)}{1+sinx}dx\)
\(⇒2I=π∫^π_0\frac{(1-sinx)}{(1+sinx)(1-sinx)}dx\)
\(⇒2I=π∫^π_0 \frac{1-sinx}{cos^2x}dx\)
\(⇒2I=π∫^π_0{sec^2x-tanxsecx}dx\)
\(⇒2I=π[tanx-secx]^π_0\)
\(⇒2I=π[2]\)
\(⇒I=π\)
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?