Let \(I\) =\(∫_0^{\frac {\pi}{4}} log(1+tan x)dx\) ...(1)
∴\(I\)= \(∫_0^{\frac {\pi}{4}} log[1+tan (\frac \pi4-x)]dx\) \([∫_0^af(x) dx = ∫_0^aƒ(a-x)dx]\)
⇒\(I\) = \(∫_0^{\frac {\pi}{4}} log[1+\frac {tan\frac \pi4-tan \ x}{1+tan \frac \pi4.tan\ x}]dx\)
⇒\(I\) = \(∫_0^{\frac {\pi}{4}} log[1+\frac {1-tan \ x}{1+tan\ x}]dx\)
⇒\(I\) = \(∫_0^{\frac {\pi}{4}} log[\frac {2}{1+tan\ x}]dx\)
⇒\(I\) = \(∫_0^{\frac {\pi}{4}} log\ 2\ dx - ∫_0^{\frac {\pi}{4}} log\ (1+tan\ x)]dx\)
⇒\(I\) = \(∫_0^{\frac {\pi}{4}} log\ 2\ dx-I\) [From(1)]
⇒\(2I\) = \([x.log\ 2]_0^{\frac {\pi}{4}}\)
⇒\(2I\) = \(\frac {\pi}{4}log\ 2\)
⇒I = \(\frac {\pi}{8}log\ 2\)
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]
