If A =\(\sum_{n=1}^{\infty}\)\(\frac{1}{( 3 + (-1)^n)^n}\) and B = \(\sum_{n=1}^{\infty}\) \(\frac{(-1)^n}{( 3 + (-1)^n)^n}\) , then A/B is equal to :
If the lines\(\stackrel{→}{r}= ( \hat{i} - \hat{j} + \hat{k} ) + λ (\hat{3j} - \hat{k} )= ( \hat{i} - \hat{j} + \hat{k} ) + λ (\hat{3j} - \hat{k} )\)and\(\stackrel{→}{r} = ( \alpha \hat{i} - \hat{j} ) + μ( \hat{2j} - \hat{3k} )\)are co-planer , then the distance of the plane containing these two lines from the point \(( α , 0 , 0 )\) is :