LetA=\(\begin{bmatrix} 2 & -1 \\ 0 & 2 \end{bmatrix}\)If B = I – 5C1(adjA) + 5C2(adjA)2 – …. – 5C5(adjA)5, then the sum of all elements of the matrix B is
If y = y(x) is the solution of the differential equation
\(2x^2\frac{dy}{dx}-2xy+3y^2=0\) such that \(y(e)=\frac{e}{3},\)
then y(1) is equal to
Let ƒ :R→R be a function defined by \(f(x) = \frac{2e^{2x}}{e^{2x} + e^x}\)Then \(f\left(\frac{1}{100}\right) + f\left(\frac{2}{100}\right) + f\left(\frac{3}{100}\right) + \ldots + f\left(\frac{99}{100}\right)\) is equal to ________.
Let the common tangents to the curves 4(x2 + y2) = 9 and y2 = 4x intersect at the point Q. Let an ellipse, centered at the origin O, has lengths of semi-minor and semi-major axes equal to OQ and 6, respectively. If e and I respectively denote the eccentricity and the length of the latus rectum of this ellipse, then \(\frac{1}{e^2}\) is equal to
Let \(\stackrel{→}{a} = \hat{i} + \hat{j} + \hat{2k}, \stackrel{→}{b} = \hat{2i} - \hat{3j} + \hat{k}\)and \(\stackrel{→}{c}= \hat{i} - \hat{j} + \hat{k}\)be three given vectors.Let \(\stackrel{→}{v}\) be a vector in the plane of \(\stackrel{→}{a}\) and \(\stackrel{→}{b}\) whose projection on \(\stackrel{→}{c}\) is \(\frac{2}{\sqrt3}\).If \(\stackrel{→}{v}.\hat{j}\) = 7 , then \(\stackrel{→}{v}.(\hat{i}+\hat{k})\) is equal to :
If the two lines \(l1:\frac{(x−2)}{3}=\frac{(y+1)}{−2},z=2 \)and\( l2:\frac{(x−1)}{1}=\frac{(2y+3)}{α}=\frac{(z+5)}{2} \)are perpendicular, then an angle between the lines l2 and \(l3:\frac{(1−x)}{3}=\frac{(2y−1)}{−4}=\frac{z}{4} \)is
Let the image of the point P(1, 2, 3) in the line \(L:\frac{x−6}{3}=\frac{y−1}{2}=\frac{z−2}{3} \)be Q. Let R (α, β, γ) be a point that divides internally the line segment PQ in the ratio 1 : 3. Then the value of 22(α + β + γ) is equal to ________.
A vector \(\vec{a}\)is parallel to the line of intersection of the plane determined by the vectors\(\hat{i},\hat{i}+\hat{j} \)and the plane determined by the vectors \(\hat{i}−\hat{j},\hat{i}+\hat{k}\). The obtuse angle between \(\vec{a}\) and the vector \(\vec{b}=\hat{i}−2\hat{j}+2\hat{k}\)is
Let the slope of the tangent to a curve y = f(x) at (x, y) be given by 2 tanx(cosx – y). If the curve passes through the point (π/4, 0) then the value of \(\int_{0}^{\frac{\pi}{2}} y \,dx\)is equal to :
Let\(M = \begin{bmatrix} 0 & -\alpha \\ \alpha & 0 \\ \end{bmatrix}\)where α is a non-zero real number an\(N = \sum\limits_{k=1}^{49} M^{2k}. \) If \((I - M^2)N = -2I\)then the positive integral value of α is ____ .
The sum of the infinite series\(1 + \frac{5}{6} + \frac{12}{6^2} + \frac{22}{6^3} + \frac{35}{6^4} +\frac{51}{6^5} + \frac{70}{6^6}+…..\)is equal to
Let\(f(x) = \begin{vmatrix} a & -1 & 0\\ ax & a & -1\\ ax^2 & ax & a \end{vmatrix}\)a ∈ R. Then the sum of the square of all the values of a, for which 2f′(10) –f′(5) + 100 = 0, is