We are given the logical expression: \[ (p \vee q) \land ((\sim p) \vee r) \rightarrow ((\sim q) \vee r). \] We need to find the combination of truth values of \( p, q, r \) that makes the above expression false.
Step 1: Understanding the implication.
The logical expression is an implication:
\[ \text{If} \quad (p \vee q) \land ((\sim p) \vee r) \quad \text{then} \quad (\sim q) \vee r. \] An implication \( A \rightarrow B \) is false only when \( A \) is true and \( B \) is false.
Thus, for the expression to be false, we need to have: \[ (p \vee q) \land ((\sim p) \vee r) = \text{T} \quad \text{and} \quad (\sim q) \vee r = \text{F}. \]
Step 2: Checking the conditions.
We need to evaluate both parts of the expression for different combinations of \( p, q, r \).
Case (1) \( p = \text{T}, q = \text{F}, r = \text{T} \):
- \( (p \vee q) = \text{T} \), since \( p = \text{T} \).
- \( (\sim p) \vee r = \text{T} \), since \( r = \text{T} \).
- \( (\sim q) \vee r = \text{T} \), since \( r = \text{T} \).
Thus, the expression is true, not false.
Case (2) \( p = \text{T}, q = \text{T}, r = \text{F} \):
- \( (p \vee q) = \text{T} \), since \( p = \text{T} \).
- \( (\sim p) \vee r = \text{F} \), since \( p = \text{T} \) and \( r = \text{F} \).
- \( (\sim q) \vee r = \text{F} \), since \( q = \text{T} \) and \( r = \text{F} \).
Thus, the expression is true, not false.
Case (3) \( p = \text{F}, q = \text{T}, r = \text{F} \):
- \( (p \vee q) = \text{T} \), since \( q = \text{T} \).
- \( (\sim p) \vee r = \text{T} \), since \( p = \text{F} \) and \( r = \text{F} \).
- \( (\sim q) \vee r = \text{F} \), since \( q = \text{T} \) and \( r = \text{F} \).
Thus, the expression is false, as \( A = \text{T} \) and \( B = \text{F} \).
Case (4) \( p = \text{T}, q = \text{F}, r = \text{F} \):
- \( (p \vee q) = \text{T} \), since \( p = \text{T} \).
- \( (\sim p) \vee r = \text{F} \), since \( p = \text{T} \) and \( r = \text{F} \).
- \( (\sim q) \vee r = \text{T} \), since \( q = \text{F} \).
Thus, the expression is true, not false.
Step 3: Conclusion.
The combination of truth values that makes the expression false is \( p = \text{F}, q = \text{T}, r = \text{F} \), which corresponds to option (1).



Which of the following circuits has the same output as that of the given circuit?

Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.