Step 1: Condition for coplanarity. For three vectors \( \mathbf{AB}, \mathbf{AC}, \mathbf{AD} \) to be coplanar, the scalar triple product must be zero: \[ \mathbf{AB} \cdot (\mathbf{AC} \times \mathbf{AD}) = 0. \]
Step 2: Expressing \( \mathbf{AB}, \mathbf{AC}, \mathbf{AD} \) in terms of \( \mathbf{a}, \mathbf{b}, \mathbf{c} \). The position vector of point \( A \) is: \[ \mathbf{A} = \mathbf{a} - \mathbf{b} + \mathbf{c}. \] The position vectors of points \( B, C, D \) are given as: \[ \mathbf{B} = \lambda \mathbf{a} - 3 \mathbf{b} + 4 \mathbf{c}, \quad \mathbf{C} = -\mathbf{a} + 2 \mathbf{b} - 3 \mathbf{c}, \quad \mathbf{D} = 2 \mathbf{a} - 4 \mathbf{b} + 6 \mathbf{c}. \] Now, the vectors \( \mathbf{AB}, \mathbf{AC}, \mathbf{AD} \) are given by: \[ \mathbf{AB} = \mathbf{B} - \mathbf{A} = (\lambda \mathbf{a} - 3 \mathbf{b} + 4 \mathbf{c}) - (\mathbf{a} - \mathbf{b} + \mathbf{c}) = (\lambda - 1) \mathbf{a} - 2 \mathbf{b} + 3 \mathbf{c}, \] \[ \mathbf{AC} = \mathbf{C} - \mathbf{A} = (-\mathbf{a} + 2 \mathbf{b} - 3 \mathbf{c}) - (\mathbf{a} - \mathbf{b} + \mathbf{c}) = -2 \mathbf{a} + 3 \mathbf{b} - 4 \mathbf{c}, \] \[ \mathbf{AD} = \mathbf{D} - \mathbf{A} = (2 \mathbf{a} - 4 \mathbf{b} + 6 \mathbf{c}) - (\mathbf{a} - \mathbf{b} + \mathbf{c}) = \mathbf{a} - 3 \mathbf{b} + 5 \mathbf{c}. \]
Step 3: Computing the scalar triple product. Now, we compute the scalar triple product: \[ \mathbf{AB} \cdot (\mathbf{AC} \times \mathbf{AD}) = 0. \] Substitute the expressions for \( \mathbf{AB}, \mathbf{AC}, \mathbf{AD} \): \[ \left( (\lambda - 1) \mathbf{a} - 2 \mathbf{b} + 3 \mathbf{c} \right) \cdot \left( (-2) \mathbf{a} + 3 \mathbf{b} - 4 \mathbf{c} \right) \times \left( \mathbf{a} - 3 \mathbf{b} + 5 \mathbf{c} \right) = 0. \]
Step 4: Expanding and solving for \( \lambda \). After performing the necessary vector cross and dot products, the equation simplifies to: \[ \lambda = 2. \]
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
