Step 1: Condition for coplanarity. For three vectors \( \mathbf{AB}, \mathbf{AC}, \mathbf{AD} \) to be coplanar, the scalar triple product must be zero: \[ \mathbf{AB} \cdot (\mathbf{AC} \times \mathbf{AD}) = 0. \]
Step 2: Expressing \( \mathbf{AB}, \mathbf{AC}, \mathbf{AD} \) in terms of \( \mathbf{a}, \mathbf{b}, \mathbf{c} \). The position vector of point \( A \) is: \[ \mathbf{A} = \mathbf{a} - \mathbf{b} + \mathbf{c}. \] The position vectors of points \( B, C, D \) are given as: \[ \mathbf{B} = \lambda \mathbf{a} - 3 \mathbf{b} + 4 \mathbf{c}, \quad \mathbf{C} = -\mathbf{a} + 2 \mathbf{b} - 3 \mathbf{c}, \quad \mathbf{D} = 2 \mathbf{a} - 4 \mathbf{b} + 6 \mathbf{c}. \] Now, the vectors \( \mathbf{AB}, \mathbf{AC}, \mathbf{AD} \) are given by: \[ \mathbf{AB} = \mathbf{B} - \mathbf{A} = (\lambda \mathbf{a} - 3 \mathbf{b} + 4 \mathbf{c}) - (\mathbf{a} - \mathbf{b} + \mathbf{c}) = (\lambda - 1) \mathbf{a} - 2 \mathbf{b} + 3 \mathbf{c}, \] \[ \mathbf{AC} = \mathbf{C} - \mathbf{A} = (-\mathbf{a} + 2 \mathbf{b} - 3 \mathbf{c}) - (\mathbf{a} - \mathbf{b} + \mathbf{c}) = -2 \mathbf{a} + 3 \mathbf{b} - 4 \mathbf{c}, \] \[ \mathbf{AD} = \mathbf{D} - \mathbf{A} = (2 \mathbf{a} - 4 \mathbf{b} + 6 \mathbf{c}) - (\mathbf{a} - \mathbf{b} + \mathbf{c}) = \mathbf{a} - 3 \mathbf{b} + 5 \mathbf{c}. \]
Step 3: Computing the scalar triple product. Now, we compute the scalar triple product: \[ \mathbf{AB} \cdot (\mathbf{AC} \times \mathbf{AD}) = 0. \] Substitute the expressions for \( \mathbf{AB}, \mathbf{AC}, \mathbf{AD} \): \[ \left( (\lambda - 1) \mathbf{a} - 2 \mathbf{b} + 3 \mathbf{c} \right) \cdot \left( (-2) \mathbf{a} + 3 \mathbf{b} - 4 \mathbf{c} \right) \times \left( \mathbf{a} - 3 \mathbf{b} + 5 \mathbf{c} \right) = 0. \]
Step 4: Expanding and solving for \( \lambda \). After performing the necessary vector cross and dot products, the equation simplifies to: \[ \lambda = 2. \]
Match the LIST-I with LIST-II
LIST-I (Expressions) | LIST-II (Values) | ||
---|---|---|---|
A. | \( i^{49} \) | I. | 1 |
B. | \( i^{38} \) | II. | \(-i\) |
C. | \( i^{103} \) | III. | \(i\) |
D. | \( i^{92} \) | IV. | \(-1\) |
Choose the correct answer from the options given below:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to: