Question:

If $\phi(x)=\frac{1}{\sqrt{ x }} \int_{\frac{\pi}{4}}^x\left(4 \sqrt{2} \sin t-3 \phi^{\prime}(t)\right) dt , x>$, then $\emptyset^{\prime}\left(\frac{\pi}{4}\right)$ is equal to :

Updated On: Dec 16, 2024
  • $\frac{4}{6+\sqrt{\pi}}$
  • $\frac{8}{6+\sqrt{\pi}}$
  • $\frac{8}{\sqrt{\pi}}$
  • $\frac{4}{6-\sqrt{\pi}}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation






So, thr correct option is (B) : $\frac{8}{6+\sqrt{\pi}}$
Was this answer helpful?
7
3

Top Questions on Methods of Integration

View More Questions

Questions Asked in JEE Main exam

View More Questions

Concepts Used:

Methods of Integration

Given below is the list of the different methods of integration that are useful in simplifying integration problems:

Integration by Parts:

 If f(x) and g(x) are two functions and their product is to be integrated, then the formula to integrate f(x).g(x) using by parts method is:

∫f(x).g(x) dx = f(x) ∫g(x) dx − ∫(f′(x) [ ∫g(x) dx)]dx + C

Here f(x) is the first function and g(x) is the second function.

Method of Integration Using Partial Fractions:

The formula to integrate rational functions of the form f(x)/g(x) is:

∫[f(x)/g(x)]dx = ∫[p(x)/q(x)]dx + ∫[r(x)/s(x)]dx

where

f(x)/g(x) = p(x)/q(x) + r(x)/s(x) and

g(x) = q(x).s(x)

Integration by Substitution Method

Hence the formula for integration using the substitution method becomes:

∫g(f(x)) dx = ∫g(u)/h(u) du

Integration by Decomposition

Reverse Chain Rule

This method of integration is used when the integration is of the form ∫g'(f(x)) f'(x) dx. In this case, the integral is given by,

∫g'(f(x)) f'(x) dx = g(f(x)) + C

Integration Using Trigonometric Identities