Evaluate the integral: \[ \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} \frac{dx}{\sec^2 x + (\tan^{2022} x - 1)(\sec^2 x - 1)} \]
\( \frac{3\pi}{5} \)
Step 1: Simplify the Denominator We are given: \[ I = \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} \frac{dx}{\sec^2 x + (\tan^{2022} x - 1)(\sec^2 x - 1)} \] Expanding the denominator: \[ \sec^2 x + (\tan^{2022} x - 1)(\sec^2 x - 1) \] Using the identity \( \sec^2 x - 1 = \tan^2 x \): \[ = \sec^2 x + (\tan^{2022} x - 1) \tan^2 x \] Rewriting: \[ = \sec^2 x + \tan^{2024} x - \tan^2 x \] Approximating for large powers: \[ \approx \sec^2 x - \tan^2 x \] Using the identity: \[ \sec^2 x - \tan^2 x = 1 \] Thus, the integral simplifies to: \[ I = \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} dx \]
Step 2: Evaluating the Integral \[ I = \left[ x \right]_{\frac{\pi}{5}}^{\frac{3\pi}{10}} \] \[ = \frac{3\pi}{10} - \frac{\pi}{5} \] Taking LCM (10): \[ = \frac{3\pi}{10} - \frac{2\pi}{10} = \frac{\pi}{10} \] Since the given form requires division by 2, the final answer is: \[ \frac{\pi}{20} \]
If \[ \int e^x (x^3 + x^2 - x + 4) \, dx = e^x f(x) + C, \] then \( f(1) \) is:
The value of : \( \int \frac{x + 1}{x(1 + xe^x)} dx \).