The given inequality is of the form of the Arithmetic Mean-Geometric Mean (AM-GM) inequality.
By applying AM-GM inequality: \[ a + b + c \geq 3 \left[ (a + b)(b + c)(c + a) \right]^{1/3} \] Thus, the maximum value of \( K \) occurs when the equality holds, which happens when: \[ K = \frac{3}{2} \]
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.