We are given that:
\[
\cot^{-1} \left( \frac{\sqrt{1 - x}}{\sqrt{1 + x}} \right) = \theta
\]
We need to find \( \sec^2 \theta \).
1. Step 1: Express \( \cot \theta \) in terms of \( x \).
By the definition of inverse cotangent:
\[
\cot \theta = \frac{\sqrt{1 - x}}{\sqrt{1 + x}}
\]
2. Step 2: Use the Pythagorean identity.
We know that:
\[
\cot^2 \theta + 1 = \csc^2 \theta
\]
Using the identity for \( \csc^2 \theta \):
\[
\csc^2 \theta = \left( \frac{\sqrt{1 - x}}{\sqrt{1 + x}} \right)^2 + 1
\]
Simplifying:
\[
\csc^2 \theta = \frac{1 - x}{1 + x} + 1 = \frac{1 - x + 1 + x}{1 + x} = \frac{2}{1 + x}
\]
3. Step 3: Find \( \sec^2 \theta \).
We know that:
\[
\sec^2 \theta = 1 + \tan^2 \theta
\]
Using the identity for \( \sec^2 \theta \), we find that \( \sec^2 \theta = 2 \).
Thus, the value of \( \sec^2 \theta \) is \( 2 \).