We are given that \( |\mathbf{a} + \mathbf{b}| = \frac{\sqrt{14}}{2} \), where \( \mathbf{a} \) and \( \mathbf{b} \) are unit vectors. We need to find the value of \( |\mathbf{a} + \mathbf{b}|^2 - |\mathbf{a} - \mathbf{b}|^2 \).
1. Step 1: Use the identity for \( |\mathbf{a} + \mathbf{b}|^2 \):
By the definition of the magnitude of a vector, we know that:
\[
|\mathbf{a} + \mathbf{b}|^2 = \mathbf{a} \cdot \mathbf{a} + 2 \mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{b}
\]
Since \( \mathbf{a} \) and \( \mathbf{b} \) are unit vectors, \( \mathbf{a} \cdot \mathbf{a} = 1 \) and \( \mathbf{b} \cdot \mathbf{b} = 1 \), so:
\[
|\mathbf{a} + \mathbf{b}|^2 = 1 + 2 \mathbf{a} \cdot \mathbf{b} + 1 = 2 + 2 \mathbf{a} \cdot \mathbf{b}
\]
2. Step 2: Use the identity for \( |\mathbf{a} - \mathbf{b}|^2 \):
Similarly, for \( |\mathbf{a} - \mathbf{b}|^2 \), we have:
\[
|\mathbf{a} - \mathbf{b}|^2 = \mathbf{a} \cdot \mathbf{a} - 2 \mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{b} = 1 - 2 \mathbf{a} \cdot \mathbf{b} + 1 = 2 - 2 \mathbf{a} \cdot \mathbf{b}
\]
3. Step 3: Subtract the two expressions:
Now, we subtract \( |\mathbf{a} - \mathbf{b}|^2 \) from \( |\mathbf{a} + \mathbf{b}|^2 \):
\[
|\mathbf{a} + \mathbf{b}|^2 - |\mathbf{a} - \mathbf{b}|^2 = (2 + 2 \mathbf{a} \cdot \mathbf{b}) - (2 - 2 \mathbf{a} \cdot \mathbf{b})
\]
Simplifying this:
\[
= 2 + 2 \mathbf{a} \cdot \mathbf{b} - 2 + 2 \mathbf{a} \cdot \mathbf{b} = 4 \mathbf{a} \cdot \mathbf{b}
\]
4. Step 4: Use the given value of \( |\mathbf{a} + \mathbf{b}| \):
We are given that \( |\mathbf{a} + \mathbf{b}| = \frac{\sqrt{14}}{2} \), so:
\[
|\mathbf{a} + \mathbf{b}|^2 = \left( \frac{\sqrt{14}}{2} \right)^2 = \frac{14}{4} = \frac{7}{2}
\]
Using the equation \( |\mathbf{a} + \mathbf{b}|^2 = 2 + 2 \mathbf{a} \cdot \mathbf{b} \), we substitute this value:
\[
\frac{7}{2} = 2 + 2 \mathbf{a} \cdot \mathbf{b}
\]
Solving for \( \mathbf{a} \cdot \mathbf{b} \):
\[
\mathbf{a} \cdot \mathbf{b} = \frac{3}{4}
\]
5. Step 5: Final answer:
Now substitute \( \mathbf{a} \cdot \mathbf{b} = \frac{3}{4} \) into the expression for \( |\mathbf{a} + \mathbf{b}|^2 - |\mathbf{a} - \mathbf{b}|^2 \):
\[
4 \mathbf{a} \cdot \mathbf{b} = 4 \times \frac{3}{4} = 3
\]
Thus, the value of \( |\mathbf{a} + \mathbf{b}|^2 - |\mathbf{a} - \mathbf{b}|^2 \) is \( 7 \).