We are given the complex number \( Z = \frac{2 - i}{\alpha + i} \), and the condition that \( 4 \, \text{Re}(Z) = 3 \, \text{Im}( \overline{Z} ) \).
1. Step 1: Express \( Z \) in terms of real and imaginary parts.
To simplify the expression for \( Z \), multiply both the numerator and denominator of \( Z \) by the conjugate of the denominator \( \alpha - i \):
\[
Z = \frac{2 - i}{\alpha + i} \cdot \frac{\alpha - i}{\alpha - i} = \frac{(2 - i)(\alpha - i)}{(\alpha + i)(\alpha - i)}
\]
Simplifying the denominator:
\[
(\alpha + i)(\alpha - i) = \alpha^2 + 1
\]
Expanding the numerator:
\[
(2 - i)(\alpha - i) = 2\alpha - 2i - i\alpha + i^2 = 2\alpha - i(\alpha + 2) - 1
\]
Thus:
\[
Z = \frac{2\alpha - 1 - i(\alpha + 2)}{\alpha^2 + 1}
\]
Now, the real and imaginary parts of \( Z \) are:
\[
\text{Re}(Z) = \frac{2\alpha - 1}{\alpha^2 + 1}, \quad \text{Im}(Z) = \frac{-(\alpha + 2)}{\alpha^2 + 1}
\]
2. Step 2: Use the given condition \( 4 \, \text{Re}(Z) = 3 \, \text{Im}( \overline{Z} ) \).
The conjugate of \( Z \), \( \overline{Z} \), has the real part as \( \frac{2\alpha - 1}{\alpha^2 + 1} \) and the imaginary part as \( \frac{\alpha + 2}{\alpha^2 + 1} \).
The condition \( 4 \, \text{Re}(Z) = 3 \, \text{Im}( \overline{Z} ) \) gives:
\[
4 \cdot \frac{2\alpha - 1}{\alpha^2 + 1} = 3 \cdot \frac{\alpha + 2}{\alpha^2 + 1}
\]
Simplifying:
\[
4(2\alpha - 1) = 3(\alpha + 2)
\]
Expanding:
\[
8\alpha - 4 = 3\alpha + 6
\]
Solving for \( \alpha \):
\[
8\alpha - 3\alpha = 6 + 4 \quad \Rightarrow \quad 5\alpha = 10 \quad \Rightarrow \quad \alpha = 2
\]
Thus, the value of \( \alpha \) is \( -2 \).