>
Mathematics
List of top Mathematics Questions
If \( e_1 \) and \( e_2 \) are respectively the eccentricities of the hyperbola \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) and its conjugate hyperbola, then the line \( \frac{x}{2e_1} + \frac{y}{2e_2} = 1 \) touches the circle having center at the origin, then its radius is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Hyperbola
The orthocentre of triangle formed by points: \( (2,1,5) \), \( (3,2,3) \) and \( (4,0,4) \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Coordinate Geometry
If \( P = (0,1,2) \), \( Q = (4,-2,-1) \) and \( O = (0,0,0) \), then \( \angle POQ \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Vectors
If the perpendicular distance from \( (1,2,4) \) to the plane \( 2x + 2y - z + k = 0 \) is 3, then \( k \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Coordinate Geometry
Evaluate:
\[ \lim_{x \to 0} \left[ \frac{1}{x} - \frac{1}{e^x - 1} \right] \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Limit and Continuity
Let \( f(x) \) be defined as:
\[ f(x) = \begin{cases} 0, & x = 0 \\ 2 - x, & 0 < x < 1 \\ 2, & x = 1 \\ 1 - x, & 1 < x < 2 \\ -\frac{3}{2}, & x \geq 2 \end{cases} \] Then which of the following is true?
AP EAMCET - 2024
AP EAMCET
Mathematics
Limit and Continuity
If \( f(x) = \left(\frac{1+x}{1-x}\right)^{\frac{1}{x}} \) is continuous at \( x = 0 \), then \( f(0) \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Limit and Continuity
The function \( f(x) = |x - 24| \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Domain of a Function
If \( y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + \cdots \infty}}} \), then the value of \( \frac{d^2y}{dx^2} \) at \( (\pi,1) \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Differentiation
If \( f(0) = 0 \), \( f'(0) = 3 \), then the derivative of \( y = f(f(f(f(f(x))))) \) at \( x = 0 \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Differentiation
The value \( c \) of Lagrange’s Mean Value Theorem for \( f(x) = e^x + 24 \) in \( [0,1] \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Mean Value Theorem
Equation of the normal to the curve \( y = x^2 + x \) at the point \( (1,2) \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Tangents and Normals
Displacement \( s \) of a particle at time \( t \) is expressed as \( s = 2t^3 - 9t \). Find the acceleration at the time when the velocity vanishes.
AP EAMCET - 2024
AP EAMCET
Mathematics
distance and displacement
If a running track of 500 ft. is to be laid out enclosing a playground, the shape of which is a rectangle with a semicircle at each end, then the length of the rectangular portion such that the area of the rectangular portion is maximum is (in feet).
AP EAMCET - 2024
AP EAMCET
Mathematics
Geometry
Evaluate the integral:
\[ \int \frac{x^2 - 1}{x^3\sqrt{2x^4 - 2x^2 + 1}} \,dx. \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
Evaluate the integral:
$$ \int \frac{x^3 \tan^{-1}(x^4)}{1 + x^8} \,dx. $$
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
Evaluate the integral:
$$ I = \int \frac{2}{1 + x + x^2} \,dx. $$
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
Evaluate the integral:
\[ I = \int \frac{1}{x^2\sqrt{1 + x^2}} \,dx. \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
Evaluate the integral:
\[ I = \int \frac{\sin 7x}{\sin 2x \sin 5x} \,dx. \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
Evaluate the integral:
\[ I = \int_0^{\frac{\pi}{4}} \log(1 + \tan x) \,dx. \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
Evaluate the limit:
\[ \lim_{n \to \infty} \left( \frac{1}{\sqrt{n^2}} + \frac{1}{\sqrt{n^2 - 1}} + \dots + \frac{1}{\sqrt{n^2 - (n-1)^2}} \right). \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
The area (in square units) bounded by the curves \( x = y^2 \) and \( x = 3 - 2y^2 \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Area under Simple Curves
Let
\(f:\R \rightarrow \R\)
and
\(g:\R \rightarrow\R\)
be functions defined by
\(f(x)=\left\{ \begin{array}{ll} x|x|\sin(\frac{1}{x}), & x\ne0 \\ 0, & x = 0, \end{array} \right.\text{and} \ g(x)=\left\{ \begin{array}{ll} 1-2x, & 0\leq x\leq \frac{1}{2}, \\ 0, & \text{otherwise.} \end{array} \right.\)
Let
\(a,b,c,d \in \R\)
. Define the function
\(h:\R\rightarrow\R\)
by
\(h(x)=af(x)+b(g(x)+g(\frac{1}{2}-x))+c(x-g(x))+d\ g(x), x\in\R\)
.
Match each entry in List-I to the correct entry in List-II.
List - I
List - II
(P)
If a = 0, b = 1, c = 0 and d = 0, then
(1)
h is one-one.
(Q)
If a = 1, b = 0, c = 0 and d = 0, then
(2)
h is onto.
(R)
If a = 0, b = 0, c = 1 and d = 0, then
(3)
h is differentiable on
\(\R\)
(S)
If a = 0, b = 0, c = 0 and d = 1, then
(4)
the range of h is [0, 1].
(5)
the range of h is {0, 1}.
The correct option is
JEE Advanced - 2024
JEE Advanced
Mathematics
composite of functions
Evaluate the integral:
\[ I = \int_{-\pi}^{\pi} \frac{x \sin x}{1 + \cos^2 x} \,dx. \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
The general solution of the differential equation:
\[ (1 + \tan y) (dx - dy) + 2x \, dy = 0. \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Differential equations
Prev
1
...
172
173
174
175
176
...
922
Next