The given line is in symmetric form. To find the perpendicular distance from the point \( P(2, -10, 1) \) to the line, we use the formula for the distance from a point to a line in space: \[ d = \frac{| \mathbf{a} \cdot (\mathbf{r_0} - \mathbf{r_1}) |}{|\mathbf{a}|} \] where \( \mathbf{a} \) is the direction vector of the line, \( \mathbf{r_0} \) is the position vector of the point, and \( \mathbf{r_1} \) is a point on the line. The direction vector \( \mathbf{a} \) is \( \langle 2, -1, 2 \rangle \), and \( \mathbf{r_1} = (1, -2, -3) \). The vector \( \mathbf{r_0} - \mathbf{r_1} = \langle 2 - 1, -10 + 2, 1 + 3 \rangle = \langle 1, -8, 4 \rangle \). Now, applying the formula for distance: \[ d = \frac{| \langle 2, -1, 2 \rangle \cdot \langle 1, -8, 4 \rangle |}{\sqrt{2^2 + (-1)^2 + 2^2}} = \frac{| 2(1) + (-1)(-8) + 2(4) |}{\sqrt{4 + 1 + 4}} = \frac{| 2 + 8 + 8 |}{3} = \frac{18}{3} = 6. \] Thus, the perpendicular distance is \( 6 \).
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to