The given line is in symmetric form. To find the perpendicular distance from the point \( P(2, -10, 1) \) to the line, we use the formula for the distance from a point to a line in space: \[ d = \frac{| \mathbf{a} \cdot (\mathbf{r_0} - \mathbf{r_1}) |}{|\mathbf{a}|} \] where \( \mathbf{a} \) is the direction vector of the line, \( \mathbf{r_0} \) is the position vector of the point, and \( \mathbf{r_1} \) is a point on the line. The direction vector \( \mathbf{a} \) is \( \langle 2, -1, 2 \rangle \), and \( \mathbf{r_1} = (1, -2, -3) \). The vector \( \mathbf{r_0} - \mathbf{r_1} = \langle 2 - 1, -10 + 2, 1 + 3 \rangle = \langle 1, -8, 4 \rangle \). Now, applying the formula for distance: \[ d = \frac{| \langle 2, -1, 2 \rangle \cdot \langle 1, -8, 4 \rangle |}{\sqrt{2^2 + (-1)^2 + 2^2}} = \frac{| 2(1) + (-1)(-8) + 2(4) |}{\sqrt{4 + 1 + 4}} = \frac{| 2 + 8 + 8 |}{3} = \frac{18}{3} = 6. \] Thus, the perpendicular distance is \( 6 \).
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: