The given line is in symmetric form. To find the perpendicular distance from the point \( P(2, -10, 1) \) to the line, we use the formula for the distance from a point to a line in space: \[ d = \frac{| \mathbf{a} \cdot (\mathbf{r_0} - \mathbf{r_1}) |}{|\mathbf{a}|} \] where \( \mathbf{a} \) is the direction vector of the line, \( \mathbf{r_0} \) is the position vector of the point, and \( \mathbf{r_1} \) is a point on the line. The direction vector \( \mathbf{a} \) is \( \langle 2, -1, 2 \rangle \), and \( \mathbf{r_1} = (1, -2, -3) \). The vector \( \mathbf{r_0} - \mathbf{r_1} = \langle 2 - 1, -10 + 2, 1 + 3 \rangle = \langle 1, -8, 4 \rangle \). Now, applying the formula for distance: \[ d = \frac{| \langle 2, -1, 2 \rangle \cdot \langle 1, -8, 4 \rangle |}{\sqrt{2^2 + (-1)^2 + 2^2}} = \frac{| 2(1) + (-1)(-8) + 2(4) |}{\sqrt{4 + 1 + 4}} = \frac{| 2 + 8 + 8 |}{3} = \frac{18}{3} = 6. \] Thus, the perpendicular distance is \( 6 \).
The molar mass of the water insoluble product formed from the fusion of chromite ore \(FeCr_2\text{O}_4\) with \(Na_2\text{CO}_3\) in presence of \(O_2\) is ....... g mol\(^{-1}\):
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to: