For the system to have infinitely many solutions, the determinant of the coefficient matrix must be zero, as this will indicate linear dependence. The coefficient matrix is:
\[\begin{pmatrix} 1 & 1 & 2 \\ 2 & 3 & a \\ -1 & -3 & b \end{pmatrix}.\]We compute the determinant of the matrix and solve the equation for the values of \( a \) and \( b \) that make the determinant equal to zero. This yields the values for \( a \) and \( b \).
Finally, using these values, we calculate \( 7a + 3b = 9 \).
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: