The integral is given by:
\[ 80 \int_{0}^{\frac{\pi}{4}} \frac{\sin\theta + \cos\theta}{9 + 16 \sin 2\theta} d\theta \]
is equals to?
Given integral:
\[ I = 80 \int_0^{\frac{\pi}{2}} \left(\frac{\sin\theta + \cos\theta}{9 + 16(2\sin\theta \cos\theta -1)} \right) d\theta \]
Rewriting the denominator:
\[ I = 80 \int_0^{\frac{\pi}{2}} \frac{\sin\theta + \cos\theta}{9 - 16(1 - 2\sin\theta \cos\theta - 1)} d\theta \]
\[ I = 80 \int_0^{\frac{\pi}{2}} \frac{\sin\theta + \cos\theta}{9 + 16 - 16(\sin\theta \cos\theta)^2} d\theta \]
Using substitution:
\(\sin\theta - \cos\theta = t\)
and
\((\cos\theta + \sin\theta) d\theta = dt\)
Thus, the integral simplifies to:
\[ I = 80 \int_{0}^{1} \frac{dt}{25 - 16t^2} \]
Rewriting the denominator:
\[ I = \frac{80}{16} \int_{-1}^{0} \frac{dt}{\left(\frac{5}{4}\right)^2 - t^2} \]
Using the standard integral formula:
\[ \int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a+x}{a-x} \right| \]
Applying limits:
\[ I = \frac{5}{2\left(\frac{5}{4}\right)} \ln \left| \frac{\frac{5}{4} + t}{\frac{5}{4} - t} \right| \Bigg|_{-1}^{0} \]
Evaluating at limits:
\[ I = 2\ln(1) + 4\ln3 \]
Since \( \ln(1) = 0 \), we get:
\[ I = 4\ln3 \]