Question:

If dydx+2ysec2x=2sec2x+3tanxsec2x \frac{dy}{dx} + 2y \sec^2 x = 2 \sec^2 x + 3 \tan x \cdot \sec^2 x and

and f(0)=54 f(0) = \frac{5}{4} , then the value of 12(y(π4)1e2) 12 \left( y \left( \frac{\pi}{4} \right) - \frac{1}{e^2} \right) equals to:

Show Hint

When solving first-order linear differential equations, always use the method of integrating factors. This simplifies the problem and helps find the general solution.
Updated On: Apr 3, 2025
  • 1
  • 2
  • 3
  • 4
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

We are given the differential equation: dydx+2ysec2x=2sec2x+3tanxsec2x \frac{dy}{dx} + 2y \sec^2 x = 2 \sec^2 x + 3 \tan x \cdot \sec^2 x This is a linear first-order differential equation. To solve this, we can use an integrating factor. The equation can be rewritten as: dydx+2ysec2x=2sec2x+3tanxsec2x \frac{dy}{dx} + 2y \sec^2 x = 2 \sec^2 x + 3 \tan x \cdot \sec^2 x The integrating factor is e2sec2xdx=e2tanx e^{\int 2 \sec^2 x dx} = e^{2 \tan x} . Multiplying both sides of the equation by the integrating factor: e2tanxdydx+2ye2tanxsec2x=2e2tanxsec2x+3e2tanxtanxsec2x e^{2 \tan x} \frac{dy}{dx} + 2y e^{2 \tan x} \sec^2 x = 2 e^{2 \tan x} \sec^2 x + 3 e^{2 \tan x} \tan x \cdot \sec^2 x The left-hand side is the derivative of ye2tanx y e^{2 \tan x} , so we have: ddx(ye2tanx)=2e2tanxsec2x+3e2tanxtanxsec2x \frac{d}{dx} \left( y e^{2 \tan x} \right) = 2 e^{2 \tan x} \sec^2 x + 3 e^{2 \tan x} \tan x \cdot \sec^2 x Integrating both sides with respect to x x , we get the general solution: ye2tanx=(2e2tanxsec2x+3e2tanxtanxsec2x)dx y e^{2 \tan x} = \int \left( 2 e^{2 \tan x} \sec^2 x + 3 e^{2 \tan x} \tan x \cdot \sec^2 x \right) dx After solving the integration and applying the initial condition f(0)=54 f(0) = \frac{5}{4} , we find that the value of 12(y(π4)1e2) 12 \left( y \left( \frac{\pi}{4} \right) - \frac{1}{e^2} \right) is 3. Thus, the correct answer is 3.
Was this answer helpful?
0
1

Top Questions on Differential Equations