The correct answer is 26.
\(I=\int_{0}^{\pi}\frac{5^{cosx}(1+cosxcos3x+cos^{2}x+cos^{3}xcos3x)}{1+5^{cosx}}dx\)
\(I=\int_{0}^{\pi}\frac{5^{-cosx}(1+cosxcos3x+cos^{2}x+cos^{3}xcos3x)}{1+5^{-cosx}}dx\)
\(2I=\int_{0}^{\pi}(1+cosxcos3x+cos^{2}x+cos^{3}xcos3x)dx\)
\(\not{2}I=\not{2}\int_{0}^{\frac{\pi}{2}}(1+cosxcos3x+cos^{2}x+cos^{3}xcos3x)dx\)
\(I=\int_{0}^{\frac{\pi}{2}}(1+sinx(-sin3x)+sin^{2}x-sin^{3}xsin3x)dx\)
\(2I=\int_{0}^{\frac{\pi}{2}}(3+cos4x+cos^{3}xcos3x-sin^{3}xsin3x)dx\)
\(2I=\int_{0}^{\frac{\pi}{2}}3+cos4x+(\frac{cos3x+3cosx}{4})cos3x-sin3x(\frac{3sinx-sin3x}{4})dx\)
\(2I=\int_{0}^{\frac{\pi}{2}}(3+cos4x+(\frac{1}{4})+\frac{3}{4}cos4x)dx\)
\(2I=\frac{13}{4}\times\frac{\pi }{2}+\frac{7}{4}(\frac{sin4x}{4})_{0}^{\frac{\pi }{2}}\Rightarrow I=\frac{13\pi }{16}\)
I = ∫0π (5 cos x (1 + cos x cos 3x + cos² x + cos³ x cos 3x) / (1 + 5 cos x)) dx
Consider two integrals:
I = ∫0π 5 cos x f(x) dx
I = ∫0π 5 (-cos x) f(π - x) dx
Adding these two integrals:
2I = ∫0π (1 + cos x cos 3x + cos² x + cos³ x cos 3x) dx
2I = 2 ∫0π/2 (1 + cos x cos 3x + cos² x + cos³ x cos 3x) dx
2I = ∫0π/2 (3 + cos 4x + (cos x + 3 cos x)/4 + (3 sin x - sin 3x)/4) dx
2I = (13/4) · (π/2) + (π/4) - (7/4) · 0 = 13π/16
The value of k is: 13.
There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.
These are tabulated below along with the meaning of each part.