We verify the equivalence of \( B \Rightarrow ((\sim A) \lor B) \) by using truth tables.
Step 1: Analyze the given expression The statement is \( B \Rightarrow ((\sim A) \lor B) \). By the definition of implication: \[ P \Rightarrow Q \equiv (\sim P) \lor Q, \] the statement can be rewritten as: \[ (\sim B) \lor ((\sim A) \lor B). \]
Step 2: Construct the truth table for \( B \Rightarrow ((\sim A) \lor B) \)
Step 3: Verify equivalence with the options
(A) Option (1): \( B \Rightarrow (A \Rightarrow B) \) Simplify \( A \Rightarrow B \equiv (\sim A) \lor B \). Thus: \[ B \Rightarrow ((\sim A) \lor B). \] The truth table matches exactly with \( B \Rightarrow ((\sim A) \lor B) \).
(B)Option (3): \( A \Rightarrow ((\sim A) \Rightarrow B) \) Simplify \( (\sim A) \Rightarrow B \equiv A \lor B \). Thus: \[ A \Rightarrow ((\sim A) \lor B) \equiv (\sim A) \lor ((\sim A) \lor B), \] which matches the truth table of \( B \Rightarrow ((\sim A) \lor B) \).
(C)Option (4): \( B \Rightarrow ((\sim A) \Rightarrow B) \) Simplify \( (\sim A) \Rightarrow B \equiv A \lor B \). Thus: \[ B \Rightarrow (A \lor B), \] which also matches the truth table of \( B \Rightarrow ((\sim A) \lor B) \).
Mathematical reasoning or the principle of mathematical reasoning is a part of mathematics where we decide the truth values of the given statements. These reasoning statements are common in most competitive exams like JEE and the questions are extremely easy and fun to solve.
Mathematically, reasoning can be of two major types such as: