Let $\hat{i}, \hat{j}$ and $\hat{k}$ be the unit vectors along the three positive coordinate axes Let $ \overrightarrow{ a }=3 \hat{ i }+\hat{ j }-\hat{ k }, $ $\overrightarrow{ b }=\hat{ i }+ b _2 \hat{ j }+ b _3 \hat{ k }, b _2, b _3 \in R , $ $ \overrightarrow{ c }= c _1 \hat{ i }+ c _2 \hat{ j }+ c _3 \hat{ k }, c _1, c _2, c _3 \in R$ be three vectors such that $b_2 b_3>0, \vec{a} \cdot \vec{b}=0$ and $\begin{pmatrix}0 & -c_3 & c_2 \\c_3 & 0 & -c_1 \\-c_2 & c_1 & 0\end{pmatrix}\begin{pmatrix} 1 \\b_2 \\b_3\end{pmatrix}=\begin{pmatrix}3-c_1 \\1-c_2 \\-1-c_3\end{pmatrix} $ Then, which of the following is/are TRUE?