Given :
\(A=\begin{bmatrix} \beta & 0 & 1 \\ 2 & 1 & -2 \\ 3 & 1 & -2 \end{bmatrix}\)
det(A)=−1 ……(i)
So, For A7 − (β − 1)A6 − βA5 to be singular
|A5| |(A2 − (β − 1)A − β| = 0
⇒ |A5| |(A + I) (A − βI)| = 0 …..(ii)
∴|A5| |A + I| |A − βI| = 0
As we know, |A| ≠ 0
|A+I| or |A−βI| = 0
\(⇒\begin{bmatrix} \beta+1 & 0 & 1 \\ 2 & 2 & -2 \\ 3 & 1 & -1 \end{bmatrix}=0\) {|A + I| ≠ 0}
It is Given that , −1=0 (Rejected)
\(∴ | A − β I | =\begin{vmatrix} 0 & 0 & 1 \\ 2 & 1-\beta & -2 \\ 3 & 1 & -2-\beta \end{vmatrix}=0\)
⇒ 2 − 3(1 − β) = 0
⇒ \(\beta=\frac{1}{3}\)
Therefore, 9β = 3.
So, the correct answer is 3.
Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.
