Question:

Let \(\beta\) be a real number. Consider the matrix
\(A=\begin{pmatrix}\beta & 0 & 1 \\2 & 1 & -2 \\3 & 1 & -2\end{pmatrix}\)
If \(A^7-(\beta-1) A^6-\beta A^5\) is a singular matrix, then the value of \(9 \beta\) is __.

Updated On: May 19, 2024
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Given :
\(A=\begin{bmatrix} \beta & 0 & 1 \\ 2 & 1 & -2 \\ 3 & 1 & -2 \end{bmatrix}\)
det(A)=−1 ……(i)
So, For A7 − (β − 1)A6 − βA5 to be singular
|A5| |(A2 − (β − 1)A − β| = 0
 ⇒ |A5| |(A + I) (A − βI)| = 0  …..(ii)
∴|A5| |A + I| |A − βI| = 0
As we know, |A| ≠ 0
|A+I| or |A−βI| = 0
\(⇒\begin{bmatrix} \beta+1 & 0 & 1 \\ 2 & 2 & -2 \\ 3 & 1 & -1 \end{bmatrix}=0\)   {|A + I| ≠ 0}
It is Given that , −1=0 (Rejected)
\(∴   | A − β I | =\begin{vmatrix} 0 & 0 & 1 \\ 2 & 1-\beta & -2 \\ 3 & 1 & -2-\beta \end{vmatrix}=0\)
⇒ 2 − 3(1 − β) = 0
⇒ \(\beta=\frac{1}{3}\)
Therefore, 9β = 3.
So, the correct answer is 3.

Was this answer helpful?
0
2

Questions Asked in JEE Advanced exam

View More Questions

Concepts Used:

Matrices

Matrix:

A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.

The basic operations that can be performed on matrices are:

  1. Addition of Matrices - The addition of matrices addition can only be possible if the number of rows and columns of both the matrices are the same.
  2. Subtraction of Matrices - Matrices subtraction is also possible only if the number of rows and columns of both the matrices are the same.
  3. Scalar Multiplication - The product of a matrix A with any number 'c' is obtained by multiplying every entry of the matrix A by c, is called scalar multiplication. 
  4. Multiplication of Matrices - Matrices multiplication is defined only if the number of columns in the first matrix and rows in the second matrix are equal. 
  5. Transpose of Matrices - Interchanging of rows and columns is known as the transpose of matrices.