The answer is 5.
Given:
\(\beta = \lim_{x \to 0} \frac{e^{x^3} - (1 - x^3)^{\frac{1}{3}} + \left( (1 - x^2)^{\frac{1}{2}} - 1 \right) \sin x}{x \sin^2 x}\)
1. Examine \(e^{x^3}\):
For \(x \to 0\),
\(e^{x^3} \approx 1 + x^3 \quad \text{(ignoring higher-order terms)}\)
2. Examine \((1 - x^3)^{\frac{1}{3}}\):
Using the binomial approximation for small x,
\((1 - x^3)^{\frac{1}{3}} \approx 1 - \frac{x^3}{3}\)
3. Examine \((1 - x^2)^{\frac{1}{2}}\):
Using the binomial approximation,
\((1 - x^2)^{\frac{1}{2}} \approx 1 - \frac{x^2}{2}\) So,
\((1 - x^2)^{\frac{1}{2}} - 1 \approx - \frac{x^2}{2}\)
4. Examine sin x:
For small x,
\(\sin x \approx x\)
Now, substitute these approximations back into the original limit expression:
\(e^{x^3} \approx 1 + x^3\)
\((1 - x^3)^{\frac{1}{3}} \approx 1 - \frac{x^3}{3}\)
\((1 - x^2)^{\frac{1}{2}} - 1 \approx - \frac{x^2}{2}\)
\(\sin x \approx x\)
Now compute the numerator:
\(e^{x^3} - (1 - x^3)^{\frac{1}{3}} + \left( (1 - x^2)^{\frac{1}{2}} - 1 \right) \sin x\)
\(\approx (1 + x^3) - \left(1 - \frac{x^3}{3}\right) + \left(- \frac{x^2}{2}\right) x\)
\(\approx 1 + x^3 - 1 + \frac{x^3}{3} - \frac{x^3}{2}\)
\(\approx x^3 + \frac{x^3}{3} - \frac{x^3}{2}\)
\(= x^3 \left(1 + \frac{1}{3} - \frac{1}{2}\right)\)
\(= x^3 \left(\frac{6}{6} + \frac{2}{6} - \frac{3}{6}\right)\)
\(= x^3 \left(\frac{5}{6}\right)\)
For the denominator:
\(x \sin^2 x \approx x \cdot x^2 = x^3\)
Thus, the limit becomes:
\(\beta = \lim_{x \to 0} \frac{\frac{5}{6} x^3}{x^3} = \frac{5}{6}\)
Therefore, the value of \(6\beta\) is:
\(6\beta = 6 \times \frac{5}{6} = 5\)
So, the answer is 5.
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is:
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Fundamental Theorem of Calculus is the theorem which states that differentiation and integration are opposite processes (or operations) of one another.
Calculus's fundamental theorem connects the notions of differentiating and integrating functions. The first portion of the theorem - the first fundamental theorem of calculus – asserts that by integrating f with a variable bound of integration, one of the antiderivatives (also known as an indefinite integral) of a function f, say F, can be derived. This implies the occurrence of antiderivatives for continuous functions.