The answer is 5.
Given:
\(\beta = \lim_{x \to 0} \frac{e^{x^3} - (1 - x^3)^{\frac{1}{3}} + \left( (1 - x^2)^{\frac{1}{2}} - 1 \right) \sin x}{x \sin^2 x}\)
1. Examine \(e^{x^3}\):
For \(x \to 0\),
\(e^{x^3} \approx 1 + x^3 \quad \text{(ignoring higher-order terms)}\)
2. Examine \((1 - x^3)^{\frac{1}{3}}\):
Using the binomial approximation for small x,
\((1 - x^3)^{\frac{1}{3}} \approx 1 - \frac{x^3}{3}\)
3. Examine \((1 - x^2)^{\frac{1}{2}}\):
Using the binomial approximation,
\((1 - x^2)^{\frac{1}{2}} \approx 1 - \frac{x^2}{2}\) So,
\((1 - x^2)^{\frac{1}{2}} - 1 \approx - \frac{x^2}{2}\)
4. Examine sin x:
For small x,
\(\sin x \approx x\)
Now, substitute these approximations back into the original limit expression:
\(e^{x^3} \approx 1 + x^3\)
\((1 - x^3)^{\frac{1}{3}} \approx 1 - \frac{x^3}{3}\)
\((1 - x^2)^{\frac{1}{2}} - 1 \approx - \frac{x^2}{2}\)
\(\sin x \approx x\)
Now compute the numerator:
\(e^{x^3} - (1 - x^3)^{\frac{1}{3}} + \left( (1 - x^2)^{\frac{1}{2}} - 1 \right) \sin x\)
\(\approx (1 + x^3) - \left(1 - \frac{x^3}{3}\right) + \left(- \frac{x^2}{2}\right) x\)
\(\approx 1 + x^3 - 1 + \frac{x^3}{3} - \frac{x^3}{2}\)
\(\approx x^3 + \frac{x^3}{3} - \frac{x^3}{2}\)
\(= x^3 \left(1 + \frac{1}{3} - \frac{1}{2}\right)\)
\(= x^3 \left(\frac{6}{6} + \frac{2}{6} - \frac{3}{6}\right)\)
\(= x^3 \left(\frac{5}{6}\right)\)
For the denominator:
\(x \sin^2 x \approx x \cdot x^2 = x^3\)
Thus, the limit becomes:
\(\beta = \lim_{x \to 0} \frac{\frac{5}{6} x^3}{x^3} = \frac{5}{6}\)
Therefore, the value of \(6\beta\) is:
\(6\beta = 6 \times \frac{5}{6} = 5\)
So, the answer is 5.
Fundamental Theorem of Calculus is the theorem which states that differentiation and integration are opposite processes (or operations) of one another.
Calculus's fundamental theorem connects the notions of differentiating and integrating functions. The first portion of the theorem - the first fundamental theorem of calculus – asserts that by integrating f with a variable bound of integration, one of the antiderivatives (also known as an indefinite integral) of a function f, say F, can be derived. This implies the occurrence of antiderivatives for continuous functions.