\(n(U)=900\)
Let A≡ Fever, B≡ Cough
C≡ Breathing problem
\(∴n(A)=190,n(B)=220,n(C)=220\)
\(n(A∪B)=330,n(B∪C)=350\)
\(n(A∪C)=340,n(A∩B∩C)=30\)
Now \(n(A∪B)=n(A)+n(B)−n(A∩B)\)
\(⇒330=190+220−n(A∩B)\)
\(⇒n(A∩B)=80\)
Similarly,
\(350=220+220−n(B∩C)\)
\(⇒n(B∩C)=90\)
and \(340=190+220−n(A∩C)\)
\(⇒n(A∩C)=70\)
\(∴n(A∪B∪C)=(190+220+220)−(80+90+70)+30\)
\(=660−240=420\)
\(⇒\) Number of person without any symptom
\(=n(∪)−n(A∪B∪C)\)
\(=900−420=480\)
Now, number of person suffering from exactly one symptom
\(=(n(A)+n(B)+n(C))−2(n(A∩B)+n(B∩C)+n(C∩A))+3n(A∩B∩C)\)
\(=(190+220+220)−2(80+90+70)+3(30)\)
\(=630−480+90=240\)
∴ Number of person suffering from at most one symptom
\(=480+240=720\)
\(⇒ Probability =\frac{720}{900}=\frac{8}{10}=0.80\)
A shop selling electronic items sells smartphones of only three reputed companies A, B, and C because chances of their manufacturing a defective smartphone are only 5%, 4%, and 2% respectively. In his inventory, he has 25% smartphones from company A, 35% smartphones from company B, and 40% smartphones from company C.
A person buys a smartphone from this shop
A shop selling electronic items sells smartphones of only three reputed companies A, B, and C because chances of their manufacturing a defective smartphone are only 5%, 4%, and 2% respectively. In his inventory, he has 25% smartphones from company A, 35% smartphones from company B, and 40% smartphones from company C.
A person buys a smartphone from this shop
(i) Find the probability that it was defective.
Figure 1 shows the configuration of main scale and Vernier scale before measurement. Fig. 2 shows the configuration corresponding to the measurement of diameter $ D $ of a tube. The measured value of $ D $ is: