\(n(U)=900\)
Let A≡ Fever, B≡ Cough
C≡ Breathing problem
\(∴n(A)=190,n(B)=220,n(C)=220\)
\(n(A∪B)=330,n(B∪C)=350\)
\(n(A∪C)=340,n(A∩B∩C)=30\)
Now \(n(A∪B)=n(A)+n(B)−n(A∩B)\)
\(⇒330=190+220−n(A∩B)\)
\(⇒n(A∩B)=80\)
Similarly,
\(350=220+220−n(B∩C)\)
\(⇒n(B∩C)=90\)
and \(340=190+220−n(A∩C)\)
\(⇒n(A∩C)=70\)
\(∴n(A∪B∪C)=(190+220+220)−(80+90+70)+30\)
\(=660−240=420\)
\(⇒\) Number of person without any symptom
\(=n(∪)−n(A∪B∪C)\)
\(=900−420=480\)
Now, number of person suffering from exactly one symptom
\(=(n(A)+n(B)+n(C))−2(n(A∩B)+n(B∩C)+n(C∩A))+3n(A∩B∩C)\)
\(=(190+220+220)−2(80+90+70)+3(30)\)
\(=630−480+90=240\)
∴ Number of person suffering from at most one symptom
\(=480+240=720\)
\(⇒ Probability =\frac{720}{900}=\frac{8}{10}=0.80\)
If probability of happening of an event is 57%, then probability of non-happening of the event is
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?