Let the eigenvalues of a matrix A be \( \lambda_1, \lambda_2, \ldots, \lambda_n \). The product of the eigenvalues is equal to the determinant of the matrix, i.e., \( \det(A) = \lambda_1 \cdot \lambda_2 \cdot \ldots \cdot \lambda_n \). The eigenvalues of \( \text{adj}(A) \) are given by \( \frac{\det(A)}{\lambda_i} \) for each eigenvalue \( \lambda_i \) of A. Given that the eigenvalues of the \( 3 \times 3 \) matrix A are \( \lambda_1 = 1 \), \( \lambda_2 = 3 \), and \( \lambda_3 = 7 \).
Step 1: Calculate the determinant of A.
\[ \det(A) = \lambda_1 \cdot \lambda_2 \cdot \lambda_3 = 1 \cdot 3 \cdot 7 = 21 \]
Step 2: Calculate the eigenvalues of \( \text{adj}(A) \)
The eigenvalues of \( \text{adj}(A) \) are \( \frac{\det(A)}{\lambda_1} \), \( \frac{\det(A)}{\lambda_2} \), and \( \frac{\det(A)}{\lambda_3} \).
For \( \lambda_1 = 1 \):
\[ \text{Eigenvalue}_1 = \frac{21}{1} = 21 \]
For \( \lambda_2 = 3 \):
\[ \text{Eigenvalue}_2 = \frac{21}{3} = 7 \]
For \( \lambda_3 = 7 \):
\[ \text{Eigenvalue}_3 = \frac{21}{7} = 3 \]
Therefore, the eigenvalues of \( \text{adj}(A) \) are 21, 7, and 3.
Which one of the following matrices is orthogonal?
For any real symmetric matrix \( A \), the transpose of \( A \) is ________ .