We are given the inverse Laplace transform of a function involving an exponential delay and a quadratic denominator.
The inverse transform is piecewise-defined: zero for \( t \leq \pi \) and an exponential function multiplied by \( f(t) \) for \( t > \pi \).
We need to find the value of \( f\left(\frac{\pi}{2}\right) \).
Key Observations:
The given inverse Laplace transform is: \[ L^{-1} \left( \frac{e^{-\pi s} \cdot s}{s^2 + 4s + 5} \right) = \begin{cases} 0, & t \leq \pi \\ e^{2(\pi - t)} f(t), & t > \pi \end{cases} \]
The function \( f(t) \) is only defined for \( t > \pi \), but we are asked to evaluate \( f\left(\frac{\pi}{2}\right) \), which lies in the region \( t \leq \pi \).
Since \( \frac{\pi}{2} \leq \pi \), the inverse Laplace transform is zero in this region, and \( f(t) \) is not directly defined here.
Analyzing the Laplace Transform:
The term \( e^{-\pi s} \) indicates a time shift of \( \pi \) units, which is why the inverse transform is zero for \( t \leq \pi \).
For \( t > \pi \), the inverse transform involves solving: \[ L^{-1} \left( \frac{s}{s^2 + 4s + 5} \right) \] after accounting for the shift and exponential factor.
Solving for \( f(t) \):
Complete the square in the denominator: \[ s^2 + 4s + 5 = (s + 2)^2 + 1 \]
Rewrite the numerator to match standard forms: \[ \frac{s}{(s + 2)^2 + 1} = \frac{(s + 2) - 2}{(s + 2)^2 + 1} = \frac{s + 2}{(s + 2)^2 + 1} - \frac{2}{(s + 2)^2 + 1} \]
Take the inverse Laplace transform: \[ L^{-1} \left( \frac{s + 2}{(s + 2)^2 + 1} - \frac{2}{(s + 2)^2 + 1} \right) = e^{-2t} \cos t - 2e^{-2t} \sin t \]
Apply the time shift \( t \to t - \pi \): \[ L^{-1} \left( \frac{e^{-\pi s} \cdot s}{s^2 + 4s + 5} \right) = e^{-2(t - \pi)} \cos(t - \pi) - 2e^{-2(t - \pi)} \sin(t - \pi) \]
Simplify using trigonometric identities: \[ \cos(t - \pi) = -\cos t, \quad \sin(t - \pi) = -\sin t \] \[ e^{-2(t - \pi)} (-\cos t + 2 \sin t) = e^{2(\pi - t)} (2 \sin t - \cos t) \]
Compare with the given form: \[ e^{2(\pi - t)} f(t) = e^{2(\pi - t)} (2 \sin t - \cos t) \] Thus, \( f(t) = 2 \sin t - \cos t \).