If $L^{-1}\left\{\frac{e^{-\pi s}}{s^2+4s+5}\right\} = \begin{cases} 0, & t \le \pi \\ e^{a(t-\pi)}(f(t)), & t>\pi \end{cases}$, then $f(\pi/2)=$
Option 1: \( 2 \).
If \(f(t)\) is the inverse Laplace transform of \( F(s) = \frac{s+1+s^{-2}}{s^2-1} \), then \(f(t)\) is