Match the details given in Column I with those given in Column II:
Consider the reaction carried out at T(K):\(\text{A(g) + B(g) → C(g)}\)\(\text{The rate law for this reaction is \(r = k[A]^2[B]^2\)}\). The concentration of A in experiment 2 and rate in experiment 3 shown as \(x\) and \(z\) in the table. \(x\) and \(z\) are respectively:\[\begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]~(\text{mol L}^{-1}) & [B]~(\text{mol L}^{-1}) & \text{Initial rate (mol L}^{-1} \text{s}^{-1}) \\ \hline 1 & 0.05 & 0.05 & R \\ 2 & x & 0.05 & 2R \\ 3 & 0.20 & 0.10 & z\\ \hline \end{array}\]
At 1000 K, the value of $K_c$ for the below reaction is $10 \text{ mol L}^{-1}$. Value of $K_p$ (in atm) is (given $R = 0.082 \text{ atm L mol}^{-1} \text{K}^{-1}$)${\{A(g) <=> B(g) + C(g)}$