For the reaction A(g) $\rightleftharpoons$ 2B(g), the backward reaction rate constant is higher than the forward reaction rate constant by a factor of 2500, at 1000 K.
[Given: R = 0.0831 atm $mol^{–1} K^{–1}$]
$K_p$ for the reaction at 1000 K is:
The equilibrium constant for decomposition of $ H_2O $ (g) $ H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g) \quad (\Delta G^\circ = 92.34 \, \text{kJ mol}^{-1}) $ is $ 8.0 \times 10^{-3} $ at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation ($ \alpha $) of water is _____ $\times 10^{-2}$ (nearest integer value). [Assume $ \alpha $ is negligible with respect to 1]
Consider the following gas phase dissociation, PCl$_5$(g) $\rightleftharpoons$ PCl$_3$(g) + Cl$_2$(g) with equilibrium constant K$_p$ at a particular temperature and at pressure P. The degree of dissociation ($\alpha$) for PCl$_5$(g) is
PCl$_5$(g) $\rightleftharpoons$ PCl$_3$(g) + Cl$_2$(g)
If \( A(1,0,2) \), \( B(2,1,0) \), \( C(2,-5,3) \), and \( D(0,3,2) \) are four points and the point of intersection of the lines \( AB \) and \( CD \) is \( P(a,b,c) \), then \( a + b + c = ? \)
Which of the following reactions give phosphine?
i. Reaction of calcium phosphide with water
ii. Heating white phosphorus with concentrated NaOH solution in an inert atmosphere
iii. Heating red phosphorus with alkali
Two statements are given below: Statement-I: The ratio of the molar volume of a gas to that of an ideal gas at constant temperature and pressure is called the compressibility factor.
Statement-II: The RMS velocity of a gas is directly proportional to the square root of \( T(K) \).