Let the initial moles of H\textsubscript{2}O and CO be 1 mole each. At equilibrium, 40\% of H\textsubscript{2}O has reacted, i.e., \(0.4\) moles. So,
\[
\begin{aligned}
\text{H}_2\text{O(g)} + \text{CO(g)} &\rightleftharpoons \text{H}_2\text{(g)} + \text{CO}_2\text{(g)}\\
\text{Initial (mol)} &:\quad 1 \quad\quad 1 \quad\quad 0 \quad\quad 0 \\
\text{Change (mol)} &:\quad -0.4 \quad -0.4 \quad +0.4 \quad +0.4 \\
\text{Equilibrium (mol)} &:\quad 0.6 \quad 0.6 \quad 0.4 \quad 0.4 \\
\end{aligned}
\]
\[
K_c = \frac{[\text{H}_2][\text{CO}_2]}{[\text{H}_2\text{O}][\text{CO}]} = \frac{0.4 \times 0.4}{0.6 \times 0.6} = \frac{0.16}{0.36} = 0.444
\]