For a first-order reaction, the relationship between the concentration at any time and the initial concentration is given by:
\[
\ln \left(\frac{[A_0]}{[A_t]}\right) = k t
\]
where:
- \( [A_0] \) is the initial concentration,
- \( [A_t] \) is the concentration at time \( t \),
- \( k \) is the rate constant.
We are given:
- \( [A_0] = 10 \, \text{g} \),
- \( [A_t] = 6 \, \text{g} \),
- \( k = 1.15 \times 10^{-3} \, \text{s}^{-1} \).
The time \( t \) is given by the formula:
\[
t = \frac{1}{k} \ln \left(\frac{[A_0]}{[A_t]}\right)
\]
Substitute the values into the equation:
\[
t = \frac{1}{1.15 \times 10^{-3}} \ln \left(\frac{10}{6}\right)
\]
\[
t = \frac{1}{1.15 \times 10^{-3}} \ln (1.6667) \approx \frac{1}{1.15 \times 10^{-3}} \times 0.5108
\]
\[
t \approx 4.4 \times 10^2 \, \text{sec} \Rightarrow x = 4.4
\]
Thus, the correct answer is \( \boxed{4.4} \).