For a first-order reaction, the rate constant \( k \) can be found using the formula:
\[
k = \frac{1}{t} \ln \left( \frac{[\text{A}]_0}{[\text{A}]} \right)
\]
where \( [\text{A}]_0 \) is the initial concentration, and \( [\text{A}] \) is the concentration at time \( t \). For 40% completion, 60% of the reactant remains:
\[
\frac{[\text{A}]}{[\text{A}]_0} = 0.6, \quad \ln \left( \frac{1}{0.6} \right) = \ln \left( \frac{10}{6} \right) = \ln 10 - \ln 6
\]
Given \( \log 6 = 0.7782 \), \( \ln 6 = \log 6 \times \ln 10 \approx 0.7782 \times 2.3026 \approx 1.792 \), and \( \ln 10 \approx 2.3026 \), so:
\[
\ln \left( \frac{10}{6} \right) \approx 2.3026 - 1.792 = 0.5106
\]
For 40% completion, \( t = 50 \, \text{min} \):
\[
k = \frac{0.5106}{50} \approx 0.010212 \, \text{min}^{-1}
\]
Now, for 80% completion, 20% of the reactant remains:
\[
\frac{[\text{A}]}{[\text{A}]_0} = 0.2, \quad \ln \left( \frac{1}{0.2} \right) = \ln 5
\]
Given \( \log 5 = 0.6990 \), \( \ln 5 = \log 5 \times \ln 10 \approx 0.6990 \times 2.3026 \approx 1.6094 \). The time \( t \) for 80% completion is:
\[
t = \frac{\ln 5}{k} = \frac{1.6094}{0.010212} \approx 157.6 \, \text{min}
\]
This is closest to 157.8 min.
So, the time required for 80% completion is 157.8 min.