Step 1: Set up the ICE table.
\includegraphics[width=0.5\linewidth]{133.png}
Step 2: Write the expression for $K_p$.
$$K_p = \frac{(P_{A_2B_4})^2 (P_{B_2})}{P_{A_2B_6}} = \frac{(2x)^2 (x)}{4-x} = \frac{4x^3}{4-x}$$
Step 3: Substitute the value of $K_p$ and solve for $x$.
$0.04 = \frac{4x^3}{4-x}$
$0.16 - 0.04x = 4x^3$
$4x^3 + 0.04x - 0.16 = 0$
By testing the options (which correspond to $4-x$), if $4-x = 3.62$, then $x = 0.38$.
$4(0.38)^3 + 0.04(0.38) - 0.16 = 4(0.054872) + 0.0152 - 0.16 = 0.219488 + 0.0152 - 0.16 = 0.074688 \approx 0$
The value of $x \approx 0.38$ is a good approximation.
Step 4: Calculate the equilibrium pressure of $A_2B_6$.
$P_{A_2B_6} = 4 - x = 4 - 0.38 = 3.62 \, atm$
Thus, the equilibrium pressure of $A_2B_6(g)$ is $ \boxed{3.62} \, atm $.