$9.0 \times 10^{-16}$
To determine the equilibrium constant (KC) for the reaction between nitrogen, oxygen, and bromine to form NOBr, we'll analyze the given equilibrium systems step-by-step.
1. Given Equilibrium Reactions:
(a) $$ 2\text{NO}(g) \rightleftharpoons \text{N}_2(g) + \text{O}_2(g) $$
with equilibrium constant:
$$ K_{c_1} = \frac{[\text{N}_2][\text{O}_2]}{[\text{NO}]^2} = 2.4 \times 10^{30} $$
(b) $$ \text{NO}(g) + \frac{1}{2}\text{Br}_2(g) \rightleftharpoons \text{NOBr}(g) $$
with equilibrium constant:
$$ K_{c_2} = \frac{[\text{NOBr}]}{[\text{NO}][\text{Br}_2]^{1/2}} = 1.4 $$
2. Target Reaction:
We want to find KC for:
$$ \frac{1}{2}\text{N}_2(g) + \frac{1}{2}\text{O}_2(g) + \frac{1}{2}\text{Br}_2(g) \rightleftharpoons \text{NOBr}(g) $$
with equilibrium expression:
$$ K_C = \frac{[\text{NOBr}]}{[\text{N}_2]^{1/2}[\text{O}_2]^{1/2}[\text{Br}_2]^{1/2}} $$
3. Relationship Between Constants:
The target reaction can be obtained by:
1) Taking the reverse of reaction (a) and halving it
2) Adding reaction (b)
Therefore:
$$ K_C = \sqrt{\frac{1}{K_{c_1}}} \times K_{c_2} $$
4. Calculation:
Substituting the given values:
$$ K_C = \sqrt{\frac{1}{2.4 \times 10^{30}}} \times 1.4 $$
$$ K_C = \frac{1.4}{\sqrt{2.4 \times 10^{30}}} $$
$$ K_C = \frac{1.4}{1.55 \times 10^{15}} $$
$$ K_C = 9.03 \times 10^{-16} $$
Final Answer:
The equilibrium constant for the reaction is $9.0 \times 10^{-16}$.
1. \( 2\text{NO}(g) \rightleftharpoons \text{N}_2(g) + \text{O}_2(g); K_1 = 2.4 \times 10^{20} \)
2. \( \text{NO}(g) + \frac{1}{2}\text{Br}_2(g) \rightleftharpoons \text{NOBr}(g); K_2 = 1.4 \)
We need to calculate the equilibrium constant \( K_C \) for the target reaction:
\( \frac{1}{2}\text{N}_2(g) + \frac{1}{2}\text{O}_2(g) + \frac{1}{2}\text{Br}_2(g) \rightleftharpoons \text{NOBr}(g) \)
To find \( K_C \), we'll combine the given reactions:
\( \text{N}_2(g) + \text{O}_2(g) \rightleftharpoons 2\text{NO}(g); K_1' = \frac{1}{K_1} = \frac{1}{2.4 \times 10^{20}} \)
Divide by 2:
\( \frac{1}{2}\text{N}_2(g) + \frac{1}{2}\text{O}_2(g) \rightleftharpoons \text{NO}(g); K_3 = \sqrt{K_1'} \)
Thus,
\( K_3 = \sqrt{\frac{1}{2.4 \times 10^{20}}} = \frac{1}{\sqrt{2.4 \times 10^{20}}} \)
The equilibrium constant for the target reaction:
\( K_C = K_3 \times K_2 \)
Since: \( K_3 = \frac{1}{\sqrt{2.4 \times 10^{20}}} \)
Then,
\( K_C = \frac{1}{\sqrt{2.4 \times 10^{20}}} \times 1.4 \)
Calculating \( \sqrt{2.4 \times 10^{20}} \):
\( \sqrt{2.4 \times 10^{20}} = 1.55 \times 10^{10} \)
Thus,
\( K_C = \frac{1.4}{1.55 \times 10^{10}} = 9.0 \times 10^{-16} \)
Therefore, the equilibrium constant \( K_C \) for the given reaction is \( 9.0 \times 10^{-16} \).
A solid cylinder of mass 2 kg and radius 0.2 m is rotating about its own axis without friction with angular velocity 5 rad/s. A particle of mass 1 kg moving with a velocity of 5 m/s strikes the cylinder and sticks to it as shown in figure.
The angular velocity of the system after the particle sticks to it will be: