>
CBSE CLASS XII
>
Mathematics
List of top Mathematics Questions asked in CBSE CLASS XII
\( \int_{-a}^a f(x) \, dx = 0 \), if:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
If the sides of a square are decreasing at the rate of \( 1.5 \, \mathrm{cm/s} \), the rate of decrease of its perimeter is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
\( x \log x \frac{dy}{dx} + y = 2 \log x \) is an example of a:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
A function \( f(x) = |1 - x + |x|| \) is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
Let \( \mathbb{R}_+ \) denote the set of all non-negative real numbers. Then the function \( f : \mathbb{R}_+ \to \mathbb{R}_+ \) defined as \( f(x) = x^2 + 1 \) is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Absolute maxima and Absolute minima
If \( A = [a_{ij}] \) is an identity matrix, then which of the following is true?
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Matrix
If
\[ \begin{bmatrix} x + y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}, \]
then the value of
\[ \left(\frac{24}{x} + \frac{24}{y}\right) \]
is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Three Dimensional Geometry
If \( a_{ij} \) and \( A_{ij} \) represent the \((i,j)^\text{th}\) element and its cofactor of the matrix: \[ \begin{bmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{bmatrix}, \] respectively, then the value of \( a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23} \) is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Determinants
A relation \( R \) defined on set \( A = \{x : x \in \mathbb{Z} \text{ and } 0 \leq x \leq 10\} \) as \( R = \{(x, y) : x = y\) is given to be an equivalence relation. The number of equivalence classes is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Functions
If \(A = \begin{bmatrix} 1 & -2 & 0 \\ 2 & -1 & -1 \\ 0 & -2 & 1 \end{bmatrix}\), find \(A^{-1}\) and use it to solve the following system of equations:
\[ x - 2y = 10, \quad 2x - y - z = 8, \quad -2y + z = 7. \]
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Functions
Find:
\[ \int_{\pi/6}^{\pi/3} \frac{\sin x + \cos x}{\sqrt{\sin 2x}} \, dx. \]
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Functions
(a) Evaluate:
\[ \int_{0}^{\pi/2} e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx. \]
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Matrix
(b) If \(y = (\tan x)^x\), then find \(\frac{dy}{dx}\).
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Evaluation of Definite Integrals by Substitution
(a) Find:
\[ \int \frac{x^2}{(x^2 + 4)(x^2 + 9)} \, dx. \]
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Differential Equations
(b) Evaluate:
\[ \int_{1}^{3} \left(|x - 1| + |x - 2| + |x - 3|\right) \, dx. \]
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Linear Programmig Problem
(a) If \(\sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y)\), prove that \(\frac{dy}{dx} = \sqrt{\frac{1 - y^2}{1 - x^2}}\).
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Evaluation of Definite Integrals by Substitution
Find the general solution of the differential equation:
\[ \frac{dy}{dx} = \frac{x^2 + y^2}{2xy}. \]
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Three Dimensional Geometry
Solve the following linear programming problem graphically:
\[ \text{Maximise } z = 5x + 4y \]
subject to the constraints:
\[ x + 2y \geq 4, \quad 3x + y \leq 6, \quad x + y \leq 4, \quad x, y \geq 0. \]
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Derivatives
(a) If \( y = \sqrt{\cos x + y} \), prove that
\[ \frac{dy}{dx} = \frac{\sin x}{1 - 2y}. \]
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Complex Numbers
(b) Show that the function \( f(x) = |x|^3 \) is differentiable at all points of its domain.
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Three Dimensional Geometry
If \( \vec{a} \) and \( \vec{b} \) are two non-zero vectors such that \( (\vec{a} + \vec{b}) \perp \vec{a
\) and \( (2\vec{a} + \vec{b}) \perp \vec{b} \), then prove that \( |\vec{b}| = \sqrt{2} |\vec{a}| \).}
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Three Dimensional Geometry
Find the absolute maximum and minimum values of the function:
\[ f(x) = 12x^{4/3} - 6x^{1/3}, \quad x \in [0, 1]. \]
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Evaluation of Definite Integrals by Substitution
Let \( f(x) \) be a continuous function on \([a, b]\) and differentiable on \((a, b)\). Then, this function \( f(x) \) is strictly increasing in \((a, b)\) if:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Derivatives
The number of points, where \( f(x) = \lfloor x \rfloor \), \( 0 < x < 3 \) (\(\lfloor \cdot \rfloor\) denotes the greatest integer function), is not differentiable is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Evaluation of Definite Integrals by Substitution
The distance of the point \( P(a, b, c) \) from the y-axis is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Three Dimensional Geometry
Prev
1
...
30
31
32
33
34
...
86
Next