Given:
1. \( (\vec{a} + \vec{b}) \perp \vec{a} \), which implies:
\[
(\vec{a} + \vec{b}) \cdot \vec{a} = 0.
\]
Expanding the dot product:
\[
\vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{a} = 0.
\]
Using \( \vec{a} \cdot \vec{a} = |\vec{a}|^2 \), we get:
\[
|\vec{a}|^2 + \vec{b} \cdot \vec{a} = 0,
\]
or
\[
\vec{b} \cdot \vec{a} = -|\vec{a}|^2. \tag{1}
\]
2. \( (2\vec{a} + \vec{b}) \perp \vec{b} \), which implies:
\[
(2\vec{a} + \vec{b}) \cdot \vec{b} = 0.
\]
Expanding the dot product:
\[
2\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} = 0.
\]
Using \( \vec{b} \cdot \vec{b} = |\vec{b}|^2 \), we get:
\[
2(\vec{a} \cdot \vec{b}) + |\vec{b}|^2 = 0. \tag{2}
\]
From equation (1), substitute \( \vec{a} \cdot \vec{b} = -|\vec{a}|^2 \) into equation (2):
\[
2(-|\vec{a}|^2) + |\vec{b}|^2 = 0.
\]
Simplify:
\[
-2|\vec{a}|^2 + |\vec{b}|^2 = 0,
\]
or
\[
|\vec{b}|^2 = 2|\vec{a}|^2.
\]
Taking the square root on both sides:
\[
|\vec{b}| = \sqrt{2} |\vec{a}|.
\]
Hence, it is proved that \( |\vec{b}| = \sqrt{2} |\vec{a}| \).