The given equation is:
\[
\sqrt{1 - x^2} + \sqrt{1 - y^2} = a(x - y).
\]
Differentiate both sides with respect to \(x\):
\[
\frac{d}{dx}\left(\sqrt{1 - x^2}\right) + \frac{d}{dx}\left(\sqrt{1 - y^2}\right) = \frac{d}{dx}[a(x - y)].
\]
Using the chain rule:
\[
\frac{-x}{\sqrt{1 - x^2}} + \frac{-y}{\sqrt{1 - y^2}} \cdot \frac{dy}{dx} = a(1 - \frac{dy}{dx}).
\]
Rearrange the terms:
\[
\frac{-y}{\sqrt{1 - y^2}} \cdot \frac{dy}{dx} + a\frac{dy}{dx} = a - \frac{x}{\sqrt{1 - x^2}}.
\]
Factorize \(\frac{dy}{dx}\) on the left-hand side:
\[
\frac{dy}{dx}\left(a - \frac{y}{\sqrt{1 - y^2}}\right) = a - \frac{x}{\sqrt{1 - x^2}}.
\]
Solve for \(\frac{dy}{dx}\):
\[
\frac{dy}{dx} = \frac{a - \frac{x}{\sqrt{1 - x^2}}}{a - \frac{y}{\sqrt{1 - y^2}}}.
\]
For the given condition \(a = 1\), this simplifies to:
\[
\frac{dy}{dx} = \sqrt{\frac{1 - y^2}{1 - x^2}}.
\]
Hence, it is proved that:
\[
\frac{dy}{dx} = \sqrt{\frac{1 - y^2}{1 - x^2}}.
\]