The given matrices are: \[ \begin{bmatrix} x + y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}. \]
1. Equating Corresponding Elements: - From the first row, first column: \[ x + y = 6. \] - From the second row, second column: \[ xy = 8. \]
2. Expression to Evaluate: We need to find: \[ \frac{24}{x} + \frac{24}{y}. \]
Simplify the expression using the identity \( \frac{a}{x} + \frac{a}{y} = a \cdot \frac{x + y}{xy} \): \[ \frac{24}{x} + \frac{24}{y} = 24 \cdot \frac{x + y}{xy}. \]
3. Substitute Known Values: - \( x + y = 6 \), - \( xy = 8 \). Substitute these values: \[ \frac{24}{x} + \frac{24}{y} = 24 \cdot \frac{6}{8}. \]
Simplify: \[ \frac{24}{x} + \frac{24}{y} = 24 \cdot \frac{3}{4} = 18. \]
Hence, the value of \( \frac{24}{x} + \frac{24}{y} \) is (D) 18.
Consider the line \[ \vec{r} = (\hat{i} - 2\hat{j} + 4\hat{k}) + \lambda(-\hat{i} + 2\hat{j} - 4\hat{k}) \]
Match List-I with List-II:
List-I | List-II |
---|---|
(A) A point on the given line | (I) \(\left(-\tfrac{1}{\sqrt{21}}, \tfrac{2}{\sqrt{21}}, -\tfrac{4}{\sqrt{21}}\right)\) |
(B) Direction ratios of the line | (II) (4, -2, -2) |
(C) Direction cosines of the line | (III) (1, -2, 4) |
(D) Direction ratios of a line perpendicular to given line | (IV) (-1, 2, -4) |
Consider the line \[ \vec{r} = (\hat{i} - 2\hat{j} + 4\hat{k}) + \lambda(-\hat{i} + 2\hat{j} - 4\hat{k}) \]
Match List-I with List-II:
List-I | List-II |
---|---|
(A) A point on the given line | (I) \(\left(-\tfrac{1}{\sqrt{21}}, \tfrac{2}{\sqrt{21}}, -\tfrac{4}{\sqrt{21}}\right)\) |
(B) Direction ratios of the line | (II) (4, -2, -2) |
(C) Direction cosines of the line | (III) (1, -2, 4) |
(D) Direction ratios of a line perpendicular to given line | (IV) (-1, 2, -4) |