Step 1: Represent the system in matrix form.
The given system of equations can be written as: \[ A \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix}, \]
where \[ A = \begin{bmatrix} 1 & -2 & 0 \\ 2 & -1 & -1 \\ 0 & -2 & 1 \end{bmatrix}, \quad \text{and} \quad \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix} \text{ is the constant matrix.} \]
Step 2: Find \(A^{-1}\). The inverse of a \(3 \times 3\) matrix \(A\) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A), \]
where \(\text{det}(A)\) is the determinant of \(A\) and \(\text{adj}(A)\) is the adjugate of \(A\).
(a) Compute \(\text{det}(A)\): \[ \text{det}(A) = \begin{vmatrix} 1 & -2 & 0 \\ 2 & -1 & -1 \\ 0 & -2 & 1 \end{vmatrix}. \]
Expanding along the first row: \[ \text{det}(A) = 1 \cdot \begin{vmatrix} -1 & -1 \\ -2 & 1 \end{vmatrix} - (-2) \cdot \begin{vmatrix} 2 & -1 \\ 0 & 1 \end{vmatrix} + 0 \cdot \begin{vmatrix} 2 & -1 \\ 0 & -2 \end{vmatrix}. \]
Compute the minors: \[ \begin{vmatrix} -1 & -1 \\ -2 & 1 \end{vmatrix} = (-1)(1) - (-1)(-2) = -1 - 2 = -3, \] \[ \begin{vmatrix} 2 & -1 \\ 0 & 1 \end{vmatrix} = (2)(1) - (-1)(0) = 2 - 0 = 2. \] Substitute back: \[ \text{det}(A) = 1(-3) - (-2)(2) + 0 = -3 + 4 = 1. \]
(b) Compute \(\text{adj}(A)\): The adjugate of \(A\) is the transpose of the cofactor matrix.
Compute the cofactors for each element of \(A\): \[ \text{Cofactor matrix of } A = \begin{bmatrix} -3 & 2 & 4 \\ 1 & 1 & -2 \\ 4 & 2 & 5 \end{bmatrix}. \]
Thus: \[ \text{adj}(A) = \begin{bmatrix} -3 & 1 & 4 \\ 2 & 1 & 2 \\ 4 & -2 & 5 \end{bmatrix}. \]
(c) Compute \(A^{-1}\): \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) = \text{adj}(A), \] as \(\text{det}(A) = 1\).
Thus: \[ A^{-1} = \begin{bmatrix} -3 & 1 & 4 \\ 2 & 1 & 2 \\ 4 & -2 & 5 \end{bmatrix}. \] Step 3: Solve for \(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\).
Using the formula: \[ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = A^{-1} \cdot \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix}, \] compute the product: \[ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -3 & 1 & 4 \\ 2 & 1 & 2 \\ 4 & -2 & 5 \end{bmatrix} \cdot \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix}. \]
Perform the multiplication: \[ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -3(10) + 1(8) + 4(7) \\ 2(10) + 1(8) + 2(7) \\ 4(10) - 2(8) + 5(7) \end{bmatrix}. \]
Simplify each term: \[ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -30 + 8 + 28 \\ 20 + 8 + 14 \\ 40 - 16 + 35 \end{bmatrix} = \begin{bmatrix} 6 \\ 42 \\ 59 \end{bmatrix}. \]
Final Answer: \[ x = 6, \quad y = 42, \quad z = 59. \]
Flowering plants with hermaphrodite flowers have developed many reproductive strategies to ensure cross-pollination. Study the given outbreeding devices adopted by certain flowering plants and answer the questions that follow.
Note : All plants belong to the same species. No pollen tube growth/inhibition of pollen germination on stigma. Pollen germination on stigma.
On the basis of the following hypothetical data, calculate the percentage change in Real Gross Domestic Product (GDP) in the year 2022 – 23, using 2020 – 21 as the base year.
Year | Nominal GDP | Nominal GDP (Adjusted to Base Year Price) |
2020–21 | 3,000 | 5,000 |
2022–23 | 4,000 | 6,000 |