The function \( f(x) = |x|^3 \) can be rewritten as:
\[
f(x) =
\begin{cases}
x^3, & \text{if } x \geq 0,
(-x)^3 = -x^3, & \text{if } x > 0.
\end{cases}
\]
1. Continuity:
At \( x = 0 \), the left-hand and right-hand limits are:
\[
\lim_{x \to 0^-} f(x) = (-x)^3 = 0, \quad \lim_{x \to 0^+} f(x) = x^3 = 0.
\]
Since both limits and \( f(0) = 0 \), the function is continuous.
2. Differentiability:
Differentiate \( f(x) \) for \( x > 0 \) and \( x < 0 \):
\[
f'(x) =
\begin{cases}
3x^2, & \text{if } x > 0,
3(-x)^2 = 3x^2, & \text{if } x < 0.
\end{cases}
\]
At \( x = 0 \), compute the left-hand and right-hand derivatives:
\[
f'(0^-) = \lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^-} \frac{-x^3}{x} = \lim_{x \to 0^-} -x^2 = 0,
\]
\[
f'(0^+) = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{x^3}{x} = \lim_{x \to 0^+} x^2 = 0.
\]
Since \( f'(0^-) = f'(0^+) = 0 \), the derivative exists at \( x = 0 \).
Therefore, \( f(x) = |x|^3 \) is differentiable at all points of its domain.