1. Convert the inequalities into equations for graphing:
- \( x + 2y = 4 \): Rearrange to \( y = \frac{4 - x}{2} \).
- \( 3x + y = 6 \): Rearrange to \( y = 6 - 3x \).
- \( x + y = 4 \): Rearrange to \( y = 4 - x \).
2. Determine the feasible region:
- The feasible region is determined by the intersection of the half-planes defined by the inequalities:
- \( x + 2y \geq 4 \): The region above the line \( x + 2y = 4 \).
- \( 3x + y \leq 6 \): The region below the line \( 3x + y = 6 \).
- \( x + y \leq 4 \): The region below the line \( x + y = 4 \).
- \( x \geq 0, y \geq 0 \): The first quadrant.
Graph these constraints and shade the common region that satisfies all the inequalities.
3. Identify the corner points of the feasible region:
The corner points are found by solving the intersection points of the boundary lines:
- Intersection of \( x + 2y = 4 \) and \( 3x + y = 6 \):
Solve:
\[
x + 2y = 4 \quad \text{and} \quad 3x + y = 6.
\]
From \( x + 2y = 4 \), \( y = \frac{4 - x}{2} \). Substitute into \( 3x + y = 6 \):
\[
3x + \frac{4 - x}{2} = 6.
\]
Simplify:
\[
\frac{6x + 4 - x}{2} = 6 \implies \frac{5x + 4}{2} = 6 \implies 5x + 4 = 12 \implies x = \frac{8}{5}.
\]
Substitute \( x = \frac{8}{5} \) into \( y = \frac{4 - x}{2} \):
\[
y = \frac{4 - \frac{8}{5}}{2} = \frac{\frac{20}{5} - \frac{8}{5}}{2} = \frac{\frac{12}{5}}{2} = \frac{6}{5}.
\]
Corner point: \( \left(\frac{8}{5}, \frac{6}{5}\right) \).
- Intersection of \( x + 2y = 4 \) and \( x + y = 4 \):
Solve:
\[
x + 2y = 4 \quad \text{and} \quad x + y = 4.
\]
From \( x + y = 4 \), \( y = 4 - x \). Substitute into \( x + 2y = 4 \):
\[
x + 2(4 - x) = 4 \implies x + 8 - 2x = 4 \implies -x + 8 = 4 \implies x = 4.
\]
Substitute \( x = 4 \) into \( y = 4 - x \):
\[
y = 4 - 4 = 0.
\]
Corner point: \( (4, 0) \).
- Intersection of \( 3x + y = 6 \) and \( x + y = 4 \):
Solve:
\[
3x + y = 6 \quad \text{and} \quad x + y = 4.
\]
Subtract \( x + y = 4 \) from \( 3x + y = 6 \):
\[
3x + y - (x + y) = 6 - 4 \implies 2x = 2 \implies x = 1.
\]
Substitute \( x = 1 \) into \( x + y = 4 \):
\[
y = 4 - 1 = 3.
\]
Corner point: \( (1, 3) \).
4. Evaluate \( z = 5x + 4y \) at the corner points:
- At \( \left(\frac{8}{5}, \frac{6}{5}\right) \):
\[
z = 5\left(\frac{8}{5}\right) + 4\left(\frac{6}{5}\right) = 8 + \frac{24}{5} = \frac{40}{5} + \frac{24}{5} = \frac{64}{5}.
\]
- At \( (4, 0) \):
\[
z = 5(4) + 4(0) = 20.
\]
- At \( (1, 3) \):
\[
z = 5(1) + 4(3) = 5 + 12 = 17.
\]
5. Conclusion:
- Maximum value of \( z \) is \( 20 \) at \( (4, 0) \).
- Minimum value of \( z \) is \( 17 \) at \( (1, 3) \).
Final Answer:
- Maximum value: \( z = 20 \) at \( (4, 0) \).
- Minimum value: \( z = 17 \) at \( (1, 3) \).