1. Find the derivative of \( f(x) \):
The given function is:
\[
f(x) = 12x^{4/3} - 6x^{1/3}.
\]
Differentiate with respect to \( x \):
\[
f'(x) = 12 \cdot \frac{4}{3}x^{1/3} - 6 \cdot \frac{1}{3}x^{-2/3}.
\]
Simplify:
\[
f'(x) = 16x^{1/3} - 2x^{-2/3}.
\]
2. Critical points:
To find critical points, set \( f'(x) = 0 \):
\[
16x^{1/3} - 2x^{-2/3} = 0.
\]
Factorize:
\[
2x^{-2/3}(8x - 1) = 0.
\]
This gives:
\[
x^{-2/3} = 0 \quad \text{(not valid as \( x \neq 0 \))}, \quad \text{or} \quad 8x - 1 = 0.
\]
Solve \( 8x - 1 = 0 \):
\[
x = \frac{1}{8}.
\]
3. Evaluate \( f(x) \) at critical points and endpoints:
The critical point is \( x = \frac{1}{8} \). Evaluate \( f(x) \) at \( x = 0 \), \( x = 1 \), and \( x = \frac{1}{8} \):
- At \( x = 0 \):
\[
f(0) = 12(0)^{4/3} - 6(0)^{1/3} = 0.
\]
- At \( x = 1 \):
\[
f(1) = 12(1)^{4/3} - 6(1)^{1/3} = 12 - 6 = 6.
\]
- At \( x = \frac{1}{8} \):
\[
f\left(\frac{1}{8}\right) = 12\left(\frac{1}{8}\right)^{4/3} - 6\left(\frac{1}{8}\right)^{1/3}.
\]
Simplify:
\[
\left(\frac{1}{8}\right)^{1/3} = \frac{1}{2}, \quad \left(\frac{1}{8}\right)^{4/3} = \left(\frac{1}{2}\right)^4 = \frac{1}{16}.
\]
Substitute:
\[
f\left(\frac{1}{8}\right) = 12 \cdot \frac{1}{16} - 6 \cdot \frac{1}{2} = \frac{3}{4} - 3 = -\frac{9}{4}.
\]
4. Determine maximum and minimum values:
- \( f(0) = 0 \),
- \( f(1) = 6 \),
- \( f\left(\frac{1}{8}\right) = -\frac{9}{4} \).
The absolute maximum value is:
\[
f(1) = 6.
\]
The absolute minimum value is:
\[
f\left(\frac{1}{8}\right) = -\frac{9}{4}.
\]
Final Answer:
- Absolute maximum value: \( 6 \) at \( x = 1 \).
- Absolute minimum value: \( -\frac{9}{4} \) at \( x = \frac{1}{8} \).