Question:

Let \( A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \). The determinant of \( A^3 \) is:

Show Hint

The determinant of matrix power is the determinant raised to that power: \( \det(A^n) = (\det A)^n \)
Updated On: Jun 25, 2025
  • 216
  • 27
  • 8
  • 1
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Determinant of matrix \( A \)
For a 2x2 matrix \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \), the determinant is \( ad - bc \). For: \[ A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \] \[ \det A = (2)(3) - (0)(0) = 6 \] Since \( A \) is diagonal, the determinant is the product of diagonal elements: \( 2 \times 3 = 6 \).

Step 2: Determinant of \( A^3 \)
Using the property of determinants, for any square matrix \( A \): \[ \det(A^n) = (\det A)^n \] So: \[ \det(A^3) = (\det A)^3 = 6^3 \] Calculate: \[ 6^3 = 6 \times 6 \times 6 = 216 \]
Step 3: Alternative approach
Compute \( A^3 \): \[ A^2 = A \cdot A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix} \] \[ A^3 = A^2 \cdot A = \begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 8 & 0 \\ 0 & 27 \end{bmatrix} \] Determinant of \( A^3 \): \[ \det(A^3) = 8 \times 27 = 216 \] Both methods agree.

Step 4: Check options
Option (1) 216 matches our result.

Was this answer helpful?
0
0